101 resultados para labdane dimers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The replication terminator protein (RTP) of Bacillus subtilis is a homodimer that binds to each replication terminus and impedes replication fork movement in only one orientation with respect to the replication origin. The three-dimensional structure of the RTP-DNA complex needs to be determined to understand how structurally symmetrical dimers of RTP generate functional asymmetry. The functional unit of each replication terminus of Bacillus subtilis consists of four turns of DNA complexed with two interacting dimers of RTP. Although the crystal structure of the RTP apoprotein dimer has been determined at 2.6-A resolution, the functional unit of the terminus is probably too large and too flexible to lend itself to cocrystallization. We have therefore used an alternative strategy to delineate the three dimensional structure of the RTP-DNA complex by converting the protein into a site-directed chemical nuclease. From the pattern of base-specific cleavage of the terminus DNA by the chemical nuclease, we have mapped the amino acid to base contacts. Using these contacts as distance constraints, with the crystal structure of RTP, we have constructed a model of the DNA-protein complex. The biological implications of the model have been discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To examine the coupling of ATP hydrolysis to helicase translocation along DNA, we have purified and characterized complexes of the Escherichia coli Rep protein, a dimeric DNA helicase, covalently crosslinked to a single-stranded hexadecameric oligodeoxynucleotide (S). Crosslinked Rep monomers (PS) as well as singly ligated (P2S) and doubly ligated (P2S2) Rep dimers were characterized. The equilibrium and kinetic constants for Rep dimerization as well as the steady-state ATPase activities of both PS and P2S crosslinked complexes were identical to the values determined for un-crosslinked Rep complexes formed with dT16. Therefore, ATP hydrolysis by both PS and P2S complexes are not coupled to DNA dissociation. This also rules out a strictly unidirectional sliding mechanism for ATP-driven translocation along single-stranded DNA by either PS or the P2S dimer. However, ATP hydrolysis by the doubly ligated P2S2 Rep dimer is coupled to single-stranded DNA dissociation from one subunit of the dimer, although loosely (low efficiency). These results suggest that ATP hydrolysis can drive translocation of the dimeric Rep helicase along DNA by a "rolling" mechanism where the two DNA binding sites of the dimer alternately bind and release DNA. Such a mechanism is biologically important when one subunit binds duplex DNA, followed by subsequent unwinding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemotaxis in bacteria is controlled by regulating the direction of flagellar rotation. The regulation is carried out by the chemotaxis protein CheY. When phosphorylated, CheY binds to FliM, which is one of the proteins that constitute the "gear box" (or "switch") of the flagellar motor. Consequently, the motor shifts from the default direction of rotation, counterclockwise, to clockwise rotation. This biased rotation is terminated when CheY is dephosphorylated either spontaneously or, faster, by a specific phosphatase, CheZ. Logically, one might expect CheZ to act directly on FliM-bound CheY. However, here we provide direct biochemical evidence that, in contrast to this expectation, phosphorylated CheY (CheY approximately P), bound to FliM, is protected from dephosphorylation by CheZ. The complex between CheY approximately P and FliM was trapped by cross-linking with dimethylsuberimidate, and its susceptibility to CheZ was measured. CheY approximately P complexed with FliM, unlike free CheY approximately P, was not dephosphorylated by CheZ. However, it did undergo spontaneous dephosphorylation. Nonspecific cross-linked CheY dimers, measured as a control, were dephosphorylated by CheZ. No significant binding between CheZ and any of the switch proteins was detected. It is concluded that, in the termination mechanism of signal transduction in bacterial chemotaxis, CheZ acts only on free CheY approximately P. We suggest that CheZ affects switch-bound CheY approximately P by shifting the equilibrium between bound and free CheY approximately P.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UV irradiation interferes with the induction of T cell-mediated immune responses, in part by causing cells in the skin to produce immunoregulatory cytokines. Recent evidence implicates UV-induced DNA damage as a trigger for the cascade of events leading to systemic immune suppression in vivo. However, to date, there has been no direct evidence linking DNA damage and cytokine production in UV-irradiated cells. Here we provide such evidence by showing that treatment of UV-irradiated murine keratinocytes in vitro with liposomal T4 endonuclease V, which accelerates the repair of cyclobutylpyrimidine dimers in these cells, inhibits their production of immunosuppressive cytokines, including interleukin 10. Application of these liposomes to murine skin in vivo also reduced the induction of interleukin 10 by UV irradiation, whereas liposomes containing heat-inactivated T4 endonuclease V were ineffective. These results support our hypothesis that unrepaired DNA damage in the skin activates the production of cytokines that down-regulate immune responses initiated at distant sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinesin and ncd motor proteins are homologous in sequence yet move in opposite directions along microtubules. We have previously shown that monomeric kinesin and ncd bind in the same orientation on equivalent sites relative to the ends of tubulin sheets of known polarity. We now report cryoelectron microscope images of 16-protofilament microtubules decorated with both single- and double-headed kinesin and double-headed ncd. Three-dimensional density maps and difference maps show that, in adenosine 5'-[beta,gamma-imido]triphosphate, both dimeric motors bind tightly to microtubules via one head, leaving the other free, though apparently in a fixed position. The attached heads of dimers bind to tubulin in the same way as single kinesin heads. The second heads are connected to the tops of the first but, whereas the second kinesin head is closely associated with the first, pairs of ncd heads are splayed apart. There is also a distinct difference in orientation: the second kinesin head is tilted toward the microtubule plus end, while the second head of ncd points toward the minus end.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Agrobacterium tumefaciens VirB7 lipoprotein contributes to the stabilization of VirB proteins during biogenesis of the putative T-complex transport apparatus. Here, we report that stabilization of VirB7 itself is correlated with its ability to form disulfide cross-linked homodimers via a reactive Cys-24 residue. Three types of beta-mercaptoethanol-dissociable complexes were visualized with VirB7 and/or a VirB7::PhoA41 fusion protein: (i) a 9-kDa complex corresponding in size to a VirB7 homodimer, (ii) a 54-kDa complex corresponding in size to a VirB7/VirB7::PhoA41 mixed dimer, and (iii) a 102-kDa complex corresponding to a VirB7::PhoA41 homodimer. A VirB7C24S mutant protein was immunologically undetectable, whereas the corresponding VirB7C24S::PhoA41 derivative accumulated to detectable levels but failed to form dissociable homodimers or mixed dimers with wild-type VirB7. We further report that VirB7-dependent stabilization of VirB9 is correlated with the ability of these two proteins to dimerize via formation of a disulfide bridge between reactive Cys-24 and Cys-262 residues, respectively. Two types of dissociable complexes were visualized: (i) a 36-kDa complex corresponding in size to a VirB7/VirB9 heterodimer and (ii) an 84-kDa complex corresponding in size to a VirB7/VirB9::PhoA293 heterodimer. A VirB9C262S mutant protein was immunologically undetectable, whereas the corresponding VirB9C262S::PhoA293 derivative accumulated to detectable levels but failed to form dissociable heterodimers with wild-type VirB7. Taken together, these results support a model in which the formation of disulfide cross-linked VirB7 dimers represent critical early steps in the biogenesis of the T-complex transport apparatus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the ability of the histone (H3-H4)2 tetramer, the central part of the nucleosome of eukaryotic chromatin, to form particles on DNA minicircles of negative and positive superhelicities, and the effect of relaxing these particles with topoisomerase I. The results show that even modest positive torsional stress from the DNA, and in particular that generated by DNA thermal fluctuations, can trigger a major, reversible change in the conformation of the particle. Neither a large excess of naked DNA, nor a crosslink between the two H3s prevented the transition from one form to the other. This suggested that during the transition, the histones neither dissociated from the DNA nor were even significantly reshuffled. Moreover, the particles reconstituted on negatively and positively supercoiled minicircles look similar under electron microscopy. These data agree best with a transition involving a switch of the wrapped DNA from a left- to a right-handed superhelix. It is further proposed, based on the left-handed overall superhelical conformation of the tetramer within the octamer [Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E. & Moudrianakis, E. N. (1991) Proc. Natl.Acad. Sci. USA 88, 10148-10152] that this change in DNA topology is mediated by a similar change in the topology of the tetramer itself, which may occur through a rotation (or a localized deformation) of the two H3-H4 dimers about their H3-H3 interface. Potential implications of this model for nucleosome dynamics in vivo are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crouzon syndrome is an autosomal dominant condition primarily characterized by craniosynostosis. This syndrome has been associated with a variety of amino acid point mutations in the extracellular domain of fibroblast growth factor receptor 2 (FGFR2). FGFR2/Neu chimeras were generated by substituting the extracellular domain of Neu with that of FGFR2 containing the following Crouzon mutations: Tyr-340-->His; Cys-342-->Tyr; Cys-342-->Arg; Cys-342-->Ser; Ser-354-->Cys: and delta17 (deletion of amino acids 345-361). Each of the mutant chimeric FGFR2/Neu constructs stimulated focus formation in NIH 3T3 cells, indicating that Crouzon mutations can stimulate signal transduction through a heterologous receptor tyrosine kinase. In vitro kinase assay results indicate that FGFR2 receptors containing Crouzon mutations have increased tyrosine kinase activity and, when analyzed under nonreducing conditions, exhibited disulfide-bonded dimers. Thus the human developmental abnormality Crouzon syndrome arises from constitutive activation of FGFR2 due to aberrant intermolecular disulfide-bonding. These results together with our earlier observation that achondroplasia results from constitutive activation of the related receptor FGFR3, leads to the prediction that other malformation syndromes attributed to FGFRs, such as Pfeiffer syndrome and Thanatophoric dysplasia, also arise from constitutive receptor activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epidermal growth factor receptor (EGFR) and p185c-neu proteins associate as dimers to create an efficient signaling assembly. Overexpression of these receptors together enhances their intrinsic kinase activity and concomitantly results in oncogenic cellular transformation. The ectodomain is able to stabilize the dimer, whereas the kinase domain mediates biological activity. Here we analyze potential interactions of the cytoplasmic kinase domains of the EGFR and p185c-neu tyrosine kinases by homology molecular modeling. This analysis indicates that kinase domains can associate as dimers and, based on intermolecular interaction calculations, that heterodimer formation is favored over homodimers. The study also predicts that the self-autophosphorylation sites located within the kinase domains are not likely to interfere with tyrosine kinase activity, but may regulate the selection of substrates, thereby modulating signal transduction. In addition, the models suggest that the kinase domains of EGFR and p185c-neu can undergo higher order aggregation such as the formation of tetramers. Formation of tetrameric complexes may explain some of the experimentally observed features of their ligand affinity and hetero-receptor internalization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most frequent form of inherited amyloidoses is associated with mutations in the transthyretin (TTR) gene coding for 127-amino acid residues of four identical, noncovalently linked subunits that form a pair of dimers in the plasma protein complex. Amyloid fibrils containing the variant and to a lesser extent the wild-type form of the TTR molecule are deposited in various organs, including peripheral nerves and the myocardium, with polyneuropathy and cardiomyopathy as major clinical manifestations. So far, more than 40 distinct amino acid substitutions distributed throughout the TTR sequence over 30 positions have been found to be correlated with an increased amyloidogenicity of TTR. Most of these amyloidogenic amino acid substitutions are suspected to alter the conformation and stability of the monomer. Here we identify and characterize by protein and DNA analysis a novel amyloidogenic Val-20 to Ile mutation in a German three-generation family. The index patient suffered from severe amyloid cardiomyopathy at the age of 60. Conformational stability and unfolding behavior of the Ile-20 monomer in urea gradients was found to be almost indistinguishable from that of wild-type TTR. In contrast, tetramer stability was significantly reduced in agreement with the expected change in the interactions between the two opposing dimers via the side chain of Ile-20. Our observations provide strong evidence for the view that amyloidogenic amino acid substitutions in TTR facilitate the conversion of tetrameric TTR complexes into those conformational intermediates of the TTR folding pathway that have an intrinsic amyloidogenic potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dyneins are a class of motor protein involved in ciliary and flagellar motility, organelle transport, and chromosome segregation. Because of their large size and subunit complexity, relatively little is known about their mechanisms of force production and regulation. We report here on the expression and analysis of the entire rat cytoplasmic dynein heavy chain (Mr 532,000). Full-length cDNAs were constructed from a series of partial clones and tagged at the C terminus with either a FLAG-epitope tag or a His6-tag. The recombinant polypeptides were expressed either in insect cells by baculovirus infection or in COS-7 cells by transient transfection. The recombinant protein was mostly soluble and showed good microtubule binding. It exhibited a broad sedimentation profile, indicative of the formation of dimers as well as higher order multimers. Good microtubule gliding motility activity was observed in assays of heavy chain expressed in either insect or COS-7 cells. Average microtubule gliding velocities of 1.2-1.8 microm/sec were observed, comparable with the rates determined for calf brain cytoplasmic dynein. These results represent the first indication that recombinant heavy chain alone is capable of force production, and should lead to rapid progress in defining the dynein motor domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type II restriction endonucleases are dimers of two identical subunits that together form one binding site for the double-stranded DNA substrate. Cleavage within the palindromic recognition site occurs in the two strands of the duplex in a concerted manner, due to the action of two catalytic centers, one per subunit. To investigate how the two identical subunits of the restriction endonuclease EcoRV cooperate in binding and cleaving their substrate, heterodimeric versions of EcoRV with different amino acid substitutions in the two subunits were constructed. For this purpose, the ecorV gene was fused to the coding region for the glutathione-binding domain of the glutathione S-transferase and a His6-tag, respectively. Upon cotransformation of Escherichia coli cells with both gene fusions stable homo- and heterodimers of the EcoRV variants are produced, which can be separated and purified to homogeneity by affinity chromatography over Ni-nitrilotriacetic acid and glutathione columns. A steady-state kinetic analysis shows that the activity of a heterodimeric variant with one inactive catalytic center is decreased by 2-fold, demonstrating that the two catalytic centers operate independently from each other. In contrast, heterodimeric variants with a defect in one DNA-binding site have a 30- to 50-fold lower activity, indicating that the two subunits of EcoRV cooperate in the recognition of the palindromic DNA sequence. By combining a subunit with an inactive catalytic center with a subunit with a defect in the DNA-binding site, EcoRV heterodimers were produced that only nick DNA specifically within the EcoRV recognition sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular superoxide dismutase (EC-SOD) is a secreted Cu and Zn-containing glycoprotein. While EC-SOD from most mammals is tetrameric and has a high affinity for heparin and heparan sulfate, rat EC-SOD has a low affinity for heparin, does not bind to heparan sulfate in vivo, and is apparently dimeric. To examine the molecular basis of the deviant physical properties of rat EC-SOD, the cDNAs of the rat and mouse EC-SODs were isolated and the deduced amino acid sequences were compared with that of human EC-SOD. Comparison of the sequences offered no obvious explanation of the differences. Analysis of a series of chimeric and point mutated EC-SODs showed that the N-terminal region contributes to the oligomeric state of the EC-SODs, and that a single amino acid, a valine (human amino acid position 24), is essential for the tetramerization. This residue is replaced by an aspartate in the rat. Rat EC-SOD carrying an Asp --> Val mutation is tetrameric and has a high heparin affinity, while mouse EC-SOD with a Val --> Asp mutation is dimeric and has lost its high heparin affinity. Thus, the rat EC-SOD dimer is converted to a tetramer by the exchange of a single amino acid. Furthermore, the cooperative action of four heparin-binding domains is necessary for high heparin affinity. These results also suggest that tetrameric EC-SODs are not symmetrical tetrahedrons, but composed of two interacting dimers, further supporting an evolutionary relationship with the dimeric cytosolic Cu and Zn-containing SODs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MADS domain homeotic proteins APETALA1 (AP1), APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) act in a combinatorial manner to specify the identity of Arabidopsis floral organs. The molecular basis for this combinatorial mode of action was investigated. Immunoprecipitation experiments indicate that all four proteins are capable of interacting with each other. However, these proteins exhibit "partner-specificity" for the formation of DNA-binding dimers; only AP1 homodimers, AG homodimers, and AP3/PI heterodimers are capable of binding to CArG-box sequences. Both the AP3/PI heterodimer and the AP1 or AG homodimers are formed when the three corresponding proteins are present together. The use of chimeric proteins formed by domain swapping indicates that the L region (which follows the MADS box) constitutes a key molecular determinant for the selective formation of DNA-binding dimers. The implications of these results for the ABC genetic model of flower development are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The replication terminator protein (RTP) of Bacillus subtilis causes polar fork arrest at replication termini by sequence-specific interaction of two dimeric proteins with the terminus sequence. The crystal structure of the RTP protein has been solved, and the structure has already provide valuable clues regarding the structural basis of its function. However, it provides little information as to the surface of the protein involved in dimer-dimer interaction. Using site-directed mutagenesis, we have identified three sites on the protein that appear to mediate the dimer-dimer interaction. Crystallographic analysis of one of the mutant proteins (Y88F) showed that its structure is unaltered when compared to the wild-type protein. The locations of the three sites suggested a model for the dimer-dimer interaction that involves an association between two beta-ribbon motifs. This model is supported by a fourth mutation that was predicted to disrupt the interaction and was shown to do so. Biochemical analyses of these mutants provide compelling evidence that cooperative protein-protein interaction between two dimers of RTP is essential to impose polar blocks to the elongation of both DNA and RNA chains.