80 resultados para intramolecular cross-linking
Resumo:
Changes in the organization and mechanical properties of the actin network within plant and animal cells are primary responses to cell signaling. These changes are suggested to be mediated through the regulation of G/F-actin equilibria, alterations in the amount and/or type of actin-binding proteins, the binding of myosin to F-actin, and the formation of myosin filaments associated with F-actin. In the present communication, the cell optical displacement assay was used to investigate the role of phosphatases and kinases in modifying the tension and organization within the actin network of soybean cells. The results from these biophysical measurements suggest that: (a) calcium-regulated kinases and phosphatases are involved in the regulation of tension, (b) calcium transients induce changes in the tension and organization of the actin network through the stimulation of proteins containing calmodulin-like domains or calcium/calmodulin-dependent regulatory proteins, (c) myosin and/or actin cross-linking proteins may be the principal regulator(s) of tension within the actin network, and (d) these actin cross-linking proteins may be the principal targets of calcium-regulated kinases and phosphatases.
Resumo:
Chemotaxis in bacteria is controlled by regulating the direction of flagellar rotation. The regulation is carried out by the chemotaxis protein CheY. When phosphorylated, CheY binds to FliM, which is one of the proteins that constitute the "gear box" (or "switch") of the flagellar motor. Consequently, the motor shifts from the default direction of rotation, counterclockwise, to clockwise rotation. This biased rotation is terminated when CheY is dephosphorylated either spontaneously or, faster, by a specific phosphatase, CheZ. Logically, one might expect CheZ to act directly on FliM-bound CheY. However, here we provide direct biochemical evidence that, in contrast to this expectation, phosphorylated CheY (CheY approximately P), bound to FliM, is protected from dephosphorylation by CheZ. The complex between CheY approximately P and FliM was trapped by cross-linking with dimethylsuberimidate, and its susceptibility to CheZ was measured. CheY approximately P complexed with FliM, unlike free CheY approximately P, was not dephosphorylated by CheZ. However, it did undergo spontaneous dephosphorylation. Nonspecific cross-linked CheY dimers, measured as a control, were dephosphorylated by CheZ. No significant binding between CheZ and any of the switch proteins was detected. It is concluded that, in the termination mechanism of signal transduction in bacterial chemotaxis, CheZ acts only on free CheY approximately P. We suggest that CheZ affects switch-bound CheY approximately P by shifting the equilibrium between bound and free CheY approximately P.
Resumo:
CD30 is a member of the tumor necrosis factor (TNF) receptor superfamily. CD30 is expressed on normal activated lymphocytes, on several virally transformed T- or B-cell lines and on neoplastic cells of Hodgkin's lymphoma. The interaction of CD30 with its ligand induces pleiotropic effects on cells resulting in proliferation, differentiation, or death. The CD30 cytoplasmic tail interacts with TNF receptor-associated factors (TRAFs), which have been shown to transduce signals mediated by TNF-R2 and CD40. We demonstrate here that TRAF2 also plays an important role in CD30-induced NF-kappa B activation. We also show that TRAF2-mediated activation of NF-kappa B plays a role in the activation of HIV transcription induced by CD30 cross-linking. Detailed site-directed mutagenesis of the CD30 cytoplasmic tail reveals that there are two independent binding sites for TRAF, each interacting with a different domain of TRAF. Furthermore, we localized the TRAF-C binding site in CD30 to a 5-7 amino acid stretch.
Resumo:
We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels.
Resumo:
Glycosylphosphatidylinositol (GPI)-anchored proteins are nonmembrane spanning cell surface proteins that have been demonstrated to be signal transduction molecules. Because these proteins do not extend into the cytoplasm, the mechanism by which cross-linking of these molecules leads to intracellular signal transduction events is obscure. Previous analysis has indicated that these proteins are associated with src family member tyrosine kinases; however, the role this interaction plays in the generation of intracellular signals is not clear. Here we show that GPI-anchored proteins are associated with alpha subunits of heterotrimeric GTP binding proteins (G proteins) in both human and murine lymphocytes. When the GPI-anchored proteins CD59, CD48, and Thy-1 were immunoprecipitated from various cell lines or freshly isolated lymphocytes, all were found to be associated with a 41-kDa phosphoprotein that we have identified, by using specific antisera, as a mixture of tyrosine phosphorylated G protein alpha subunits: a small amount of Gialpha1, and substantial amounts of Gialpha2 and Gialpha3. GTP binding assays performed with immunoprecipitations of CD59 indicated that there was GTP-binding activity associated with this molecule. Thus, we have shown by both immunochemical and functional criteria that GPI-anchored proteins are physically associated with G proteins. These experiments suggest a potential role of G proteins in the transduction of signals generated by GPI-anchored molecules expressed on lymphocytes of both mouse and human.
Resumo:
We have studied RNase P RNA (M1 RNA) cleavage of model tRNA precursors that are cleaved at two independent positions. Here we present data demonstrating that cleavage at both sites depends on the 2'-OH immediately 5' of the respective cleavage site. However, we show that the 2-amino group of a guanosine at the cleavage site plays a significant role in cleavage at one of these sites but not at the other. These data suggest that these two cleavage sites are handled differently by the ribozyme. This theory is supported by our finding that the cross-linking pattern between Ml RNA and tRNA precursors carrying 4-thioU showed distinct differences, depending on the location of the 4-thioU relative to the respective cleavage site. These findings lead us to suggest that different cleavage sites are aligned differently in the active site, possibly as a result of different binding modes of a substrate to M1 RNA. We discuss a model in which the interaction between the 3'-terminal "RCCA" motif (first three residues interact) of a tRNA precursor and M1 RNA plays a significant role in this process.
Resumo:
The fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) homotetramer has been destabilized by site-directed mutagenesis at the two different subunit interfaces. A double mutant aldolase, Q125D/E224A, sediments as two distinct species, characteristic of a slow equilibrium, with velocities expected for the monomer and tetramer. The aldolase monomer is shown to be catalytically active following isolation from sucrose density gradients. The isolated aldolase monomer had 72% of the specific activity of the wild-type enzyme and a slightly lower Michaelis constant, clearly indicating that the quaternary structure is not required for catalysis. Cross-linking of the isolated monomer confirmed that it does not rapidly reequilibrate with the tetramer following isolation. There was a substantial difference between the tetramer and monomer in their inactivation by urea. The stability toward both urea and thermal inactivation of these oligomeric variants suggests a role for the quaternary structure in maintaining the stability of aldolase, which may be an important role of quaternary structure in many proteins.
Resumo:
cGMP phosphodiesterase (PDE) is the key effector enzyme of vertebrate photoreceptor cells that regulates the level of the second messenger, cGMP. PDE consists of catalytic alpha and beta subunits (Palpha and Pbeta) and two inhibitory gamma subunits (Pgamma) that block PDE activity in the dark. The major inhibitory region has been localized to the C terminus of Pgamma. The last C-terminal residues -IleIle form an important hydrophobic domain critical for the inhibition of PDE activity. In this study, mutants of Pgamma were designed for cross-linking experiments to identify regions on Palpha and Pbeta subunits that bind to the Pgamma C terminus. In one of the mutants, the cysteine at position 68 was substituted with serine, and the last four C-terminal residues of Pgamma were replaced with a single cysteine. This mutant, Pgamma83Cys, was labeled with photoprobe 4-(N-maleimido) benzophenone (MBP) at the cysteine residue. The labeled Pgamma83CysMBP mutant was a more potent inhibitor of PDE activity than the unlabeled mutant, indicating that the hydrophobic MBP probe mimics the Pgamma hydrophobic C terminus. A specific, high-yield cross-linking of up to 70% was achieved between the Pgamma83CysMBP and PDE catalytic subunits. Palpha and the N-terminally truncated Pbeta (lacking 147 aa residues) cross-linked to Pgamma83CysMBP with the same efficiency. Using mass spectrometric analysis of tryptic fragments from the cross-linked PDE, we identified the site of cross-linking to aa residues 751-763 of Palpha. The corresponding region of Pbeta, Pbeta-749-761, also may bind to the Pgamma C terminus. Our data suggest that Pgamma blocks PDE activity through the binding to the catalytic site of PDE, near the NKXD motif, a consensus sequence for interaction with the guanine ring of cGMP.
Resumo:
Plectin, a 500-kDa intermediate filament binding protein, has been proposed to provide mechanical strength to cells and tissues by acting as a cross-linking element of the cytoskeleton. To set the basis for future studies on gene regulation, tissue-specific expression, and pathological conditions involving this protein, we have cloned the human plectin gene, determined its coding sequence, and established its genomic organization. The coding sequence contains 32 exons that extend over 32 kb of the human genome. Most of the introns reside within a region encoding the globular N-terminal domain of the molecule, whereas the entire central rod domain and the entire C-terminal globular domain were found to be encoded by single exons of remarkable length, >3 kb and >6 kb, respectively. Overall, the organization of the human plectin gene was strikingly similar to that of human bullous pemphigoid antigen 1 (BPAG1), confirming that both proteins belong to the same gene family. Comparison of the deduced protein sequences for human and rat plectin revealed that they were 93% identical. By using fluorescence in situ hybridization, we have mapped the plectin gene to the long arm of chromosome 8 within the telomeric region. This gene locus (8q24) has previously been implicated in the human blistering skin disease epidermolysis bullosa simplex Ogna. Detailed knowledge of the structure of the plectin gene and its chromosome localization will aid in the elucidation of whether this or any other pathological conditions are linked to alterations in the plectin gene.
Resumo:
In previous experiments, the homeodomain proteins even-skipped and fushi-tarazu were found to UV cross-link to a surprisingly wide array of DNA sites in living Drosophila embryos. We now show that UV cross-linking gives a highly accurate measure of DNA binding by these proteins. In addition, the binding of even-skipped and fushi-tarazu proteins has been measured in vitro to the same DNA fragments that were examined in vivo. This analysis shows that these proteins have broad DNA recognition properties in vitro that are likely to be important determinants of their distribution on DNA in vivo, but it also shows that in vitro DNA binding specificity alone is not sufficient to explain the distribution of these proteins in embryos.
Resumo:
A covalently cross-linked dimer of yeast DNA topoisomerase II was created by fusing the enzyme with the GCN4 leucine zipper followed by two glycines and a cysteine. Upon oxidation of the chimeric protein, a disulfide bond forms between the two carboxyl termini, covalently and intradimerically cross-linking the two protomers. In addition, all nine of the cysteines naturally occurring in topoisomerase II have been changed to alanines in this construct. This cross-linked, cysteine-less topoisomerase II is catalytically active in DNA duplex passage as indicated by ATP-dependent DNA supercoil relaxation and kinetoplast DNA decatenation assays. However, these experiments do not directly distinguish between a "one-gate" and a "two-gate" mechanism for the enzyme.
Resumo:
Coatomer, a cytosolic heterooligomeric protein complex that consists of seven subunits [alpha-, beta-, beta'-, gamma-, delta-, epsilon-, and zeta-COP (nonclathrin coat protein)], has been shown to interact with dilysine motifs typically found in the cytoplasmic domains of various endoplasmic-reticulum-resident membrane proteins [Cosson, P. & Letourneur, F. (1994) Science 263, 1629-1631]. We have used a photo-cross-linking approach to identify the site of coatomer that is involved in binding to the dilysine motifs. An octapeptide corresponding to the C-terminal tail of Wbp1p, a component of the yeast N-oligosaccharyltransferase complex, has been synthesized with a photoreactive phenylalanine at position -5 and was radioactively labeled with [125I]iodine at a tyrosine residue introduced at the N terminus of the peptide. Photolysis of isolated coatomer in the presence of this peptide and immunoprecipitation of coatomer from photo-cross-linked cell lysates reveal that gamma-COP is the predominantly labeled protein. From these results, we conclude that coatomer is able to bind to the cytoplasmic dilysine motifs of membrane proteins of the early secretory pathway via its gamma-COP subunit, whose complete cDNA-derived amino acid sequence is also presented.
Resumo:
The progress toward single-dose vaccines has been limited by the poor solid-state stability of vaccine antigens within controlled-release polymers, such as poly(lactide-co-glycolide). For example, herein we report that lyophilized tetanus toxoid aggregates during incubation at 37 degrees C and elevated humidity--i.e., conditions relevant to its release from such systems. The mechanism and extent of this aggregation are dependent on the moisture level in the solid protein, with maximum aggregation observed at intermediate moisture contents. The main aggregation pathway is consistent with formaldehyde-mediated cross-linking, where reactive electrophiles created and stored in the vaccine upon formalinization (exposure to formaldehyde during vaccine preparation) react with nucleophiles of a second vaccine molecule to form intermolecular cross-links. This process is inhibited by the following: (i) succinylating the vaccine to block reactive amino groups; (ii) treating the vaccine with sodium cyanoborohydride, which presumably reduces Schiff bases and some other electrophiles created upon formalinization; and (iii) addition of low-molecular-weight excipients, particularly sorbitol. The moisture-induced aggregation of another formalinized vaccine, diphtheria toxoid, is also retarded by succinylation, suggesting the generality of this mechanism for formalinized vaccines. Hence, mechanistic stability studies of the type described herein may be important for the development of effective single-dose vaccines.
Resumo:
Programmed cell death (apoptosis) is a normal physiological process, which could in principle be manipulated to play an important role in cancer therapy. The key importance of p53 expression in the apoptotic response to DNA-damaging agents has been stressed because mutant or deleted p53 is so common in most kinds of cancer. An important strategy, therefore, is to find ways to induce apoptosis in the absence of wild-type p53. In this paper, we compare apoptosis in normal human mammary epithelial cells, in cells immortalized with human papilloma virus (HPV), and in mammary carcinoma cell lines expressing wild-type p53, mutant p53, or no p53 protein. Apoptosis was induced with mitomycin C (MMC), a DNA cross-linking and damaging agent, or with staurosporine (SSP), a protein kinase inhibitor. The normal and HPV-transfected cells responded more strongly to SSP than did the tumor cells. After exposure to MMC, cells expressing wild-type p53 underwent extensive apoptosis, whereas cells carrying mutated p53 responded weakly. Primary breast cancer cell lines null for p53 protein were resistant to MMC. In contrast, two HPV immortalized cell lines in which p53 protein was destroyed by E6-modulated ubiquitinylation were highly sensitive to apoptosis induced by MMC. Neither p53 mRNA nor protein was induced in the HPV immortalized cells after MMC treatment, although p53 protein was elevated by MMC in cells with wild-type p53. Importantly, MMC induced p21 mRNA but not p21 protein expression in the HPV immortalized cells. Thus, HPV 16E6 can sensitize mammary epithelial cells to MMC-induced apoptosis via a p53- and p21-independent pathway. We propose that the HPV 16E6 protein modulates ubiquitin-mediated degradation not only of p53 but also of p21 and perhaps other proteins involved in apoptosis.
Resumo:
The diphtheria tox repressor (DtxR) is a transition metal ion-dependent regulatory element that controls the expression of diphtheria toxin and several genes involved in the synthesis of siderophores in Corynebacterium diphtheriae. In the presence of transition metal ions apo-DtxR becomes activated and specifically binds to its target DNA sequences. We demonstrate by glutaraldehyde cross-linking that monomeric apo-DtxR is in weak equilibrium with a dimeric form and that upon addition of activating metal ions to the reaction mixture a dimeric complex is stabilized. Addition of the DNA-binding-defective mutant apo-DtxR(delta 1-47) to apo-DtxR in the absence of transition metal ions inhibits conversion of the apo-repressor to its activated DNA-binding form. We also show that the binding of Ni2+ to both apo-DtxR and apo-DtxR(delta 1-47) is cooperative and that upon ion binding there is a conformational change in the environment of the indole ring moiety of Trp-104. For the wild-type repressor the consequences of this conformational change include a shift in equilibrium toward dimer formation and activation of target DNA binding by the repressor. We conclude that the formation of DtxR homodimers is mediated through a protein-protein interaction domain that is also activated on metal ion binding.