117 resultados para infectious cDNA
Resumo:
Trehalose (α-d-glucopyranosyl-1,1-α-d-glucopyranoside), a disaccharide widespread among microbes and lower invertebrates, is generally believed to be nonexistent in higher plants. However, the recent discovery of Arabidopsis genes whose products are involved in trehalose synthesis has renewed interest in the possibility of a function of trehalose in higher plants. We previously showed that trehalase, the enzyme that degrades trehalose, is present in nodules of soybean (Glycine max [L.] Merr.), and we characterized the enzyme as an apoplastic glycoprotein. Here we describe the purification of this trehalase to homogeneity and the cloning of a full-length cDNA encoding this enzyme, named GMTRE1 (G. max trehalase 1). The amino acid sequence derived from the open reading frame of GMTRE1 shows strong homology to known trehalases from bacteria, fungi, and animals. GMTRE1 is a single-copy gene and is expressed at a low but constant level in many tissues.
Resumo:
Isochorismate is an important metabolite formed at the end of the shikimate pathway, which is involved in the synthesis of both primary and secondary metabolites. It is synthesized from chorismate in a reaction catalyzed by the enzyme isochorismate synthase (ICS; EC 5.4.99.6). We have purified ICS to homogeneity from elicited Catharanthus roseus cell cultures. Two isoforms with an apparent molecular mass of 64 kD were purified and characterized. The Km values for chorismate were 558 and 319 μm for isoforms I and II, respectively. The isoforms were not inhibited by aromatic amino acids and required Mg2+ for enzyme activity. Polymerase chain reaction on a cDNA library from elicited C. roseus cells with a degenerated primer based on the sequence of an internal peptide from isoform II resulted in an amplification product that was used to screen the cDNA library. This led to the first isolation, to our knowledge, of a plant ICS cDNA. The cDNA encodes a protein of 64 kD with an N-terminal chloroplast-targeting signal. The deduced amino acid sequence shares homology with bacterial ICS and also with anthranilate synthases from plants. Southern analysis indicates the existence of only one ICS gene in C. roseus.
Resumo:
This report concerns a clinical trial for rheumatoid arthritis (RA), approved by the US National Institutes of Health and the Food and Drug Administration. An amphotropic retrovirus (MFG-IRAP) was used ex vivo to transfer a cDNA encoding human interleukin-1 receptor antagonist (IL-1Ra) to synovium. The protocol required the transduced cells to secrete at least 30 ng IL-1Ra/106 cells per 48 h before reimplantation. Here we have evaluated various protocols for their efficiency in transducing cultures of human rheumatoid synoviocytes. The most reliably efficient methods used high titer retrovirus (approximately 108 infectious particles/ml). Transduction efficiency was increased further by exposing the cells to virus under flow-through conditions. The use of dioctadecylamidoglycylspermine (DOGS) as a polycation instead of Polybrene (hexadimethrine bromide) provided an additional small increment in efficiency. Under normal conditions of static transduction, standard titer, clinical grade retrovirus (approximately 5 × 105 infectious particles/ml) failed to achieve the expression levels required by the clinical trial. However, the shortfall could be remedied by increasing the time of transduction under static conditions, transducing under flow-through conditions, or transducing during centrifugation.
Resumo:
Poly(ADP)-ribose polymerase (PADPRP) has been purified to apparent homogeneity from suspension cultures of the maize (Zea mays) callus line. The purified enzyme is a single polypeptide of approximately 115 kD, which appears to dimerize through an S-S linkage. The catalytic properties of the maize enzyme are very similar to those of its animal counterpart. The amino acid sequences of three tryptic peptides were obtained by microsequencing. Antibodies raised against peptides from maize PADPRP cross-reacted specifically with the maize enzyme but not with the enzyme from human cells, and vice versa. We have also characterized a 3.45-kb expressed-sequence-tag clone that contains a full-length cDNA for maize PADPRP. An open reading frame of 2943 bp within this clone encodes a protein of 980 amino acids. The deduced amino acid sequence of the maize PADPRP shows 40% to 42% identity and about 50% similarity to the known vertebrate PADPRP sequences. All important features of the modular structure of the PADPRP molecule, such as two zinc fingers, a putative nuclear localization signal, the automodification domain, and the NAD+-binding domain, are conserved in the maize enzyme. Northern-blot analysis indicated that the cDNA probe hybridizes to a message of about 4 kb.
Resumo:
Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide.
Resumo:
Higher plants synthesize 24-methyl sterols and 24-ethyl sterols in defined proportions. As a first step in investigating the physiological function of this balance, an Arabidopsis cDNA encoding an S-adenosyl-l-methionine 24-methylene lophenol-C241-methyltransferase, the typical plant enzyme responsible for the production of 24-ethyl sterols, was expressed in tobacco (Nicotiana tabacum L.) under the control of a constitutive promoter. Transgenic plants displayed a novel 24-alkyl-Δ5-sterol profile: the ratio of 24-methyl cholesterol to sitosterol, which is close to 1 in the wild type, decreased dramatically to values ranging from 0.01 to 0.31. In succeeding generations of transgenic tobacco, a high S-adenosyl-l-methionine 24-methylene lophenol-C241-methyltransferase enzyme activity and, consequently, a low ratio of 24-methyl cholesterol to sitosterol, was associated with reduced growth compared with the wild type. However, this new morphological phenotype appeared only below the threshold ratio of 24-methyl cholesterol to sitosterol of approximately 0.1. Because the size of cells was unchanged in small, transgenic plants, we hypothesize that a radical decrease of 24-methyl cholesterol and/or a concomitant increase of sitosterol would be responsible for a change in cell division through as-yet unknown mechanisms.
Resumo:
The root hair is a specialized cell type involved in water and nutrient uptake in plants. In legumes the root hair is also the primary site of recognition and infection by symbiotic nitrogen-fixing Rhizobium bacteria. We have studied the root hairs of Medicago truncatula, which is emerging as an increasingly important model legume for studies of symbiotic nodulation. However, only 27 genes from M. truncatula were represented in GenBank/EMBL as of October, 1997. We report here the construction of a root-hair-enriched cDNA library and single-pass sequencing of randomly selected clones. Expressed sequence tags (899 total, 603 of which have homology to known genes) were generated and made available on the Internet. We believe that the database and the associated DNA materials will provide a useful resource to the community of scientists studying the biology of roots, root tips, root hairs, and nodulation.
Resumo:
Carbonic anhydrase (CA) (EC 4.2.1.1) enzymes catalyze the reversible hydration of CO2, a reaction that is important in many physiological processes. We have cloned and sequenced a full-length cDNA encoding an intracellular β-CA from the unicellular green alga Coccomyxa. Nucleotide sequence data show that the isolated cDNA contains an open reading frame encoding a polypeptide of 227 amino acids. The predicted polypeptide is similar to β-type CAs from Escherichia coli and higher plants, with an identity of 26% to 30%. The Coccomyxa cDNA was overexpressed in E. coli, and the enzyme was purified and biochemically characterized. The mature protein is a homotetramer with an estimated molecular mass of 100 kD. The CO2-hydration activity of the Coccomyxa enzyme is comparable with that of the pea homolog. However, the activity of Coccomyxa CA is largely insensitive to oxidative conditions, in contrast to similar enzymes from most higher plants. Fractionation studies further showed that Coccomyxa CA is extrachloroplastic.
Resumo:
Two distinct cDNA clones encoding for the glutamate decarboxylase (GAD) isoenzymes GAD1 and GAD2 from Arabidopsis (L.) Heynh. were characterized. The open reading frames for GAD1 and GAD2 were expressed in Escherichia coli and the recombinant proteins were purified by affinity chromatography. Analysis of the recombinant proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis suggest that GAD1 and GAD2 encode for 58- and 56-kD peptides, respectively. The enzymatic activities of the pure recombinant GAD1 and GAD2 proteins were stimulated 35- and 13-fold, respectively, by Ca2+/calmodulin but not by Ca2+ or calmodulin alone. Southern-blot analysis of genomic DNA suggests that there is only one copy of each gene in Arabidopsis. The GAD1 transcript and a corresponding 58-kD peptide were detected in roots only. Conversely, the GAD2 transcript and a corresponding 56-kD peptide were detected in all organs tested. The specific activity, GAD2 transcript, and 56-kD peptide increased in leaves of plants treated with 10 mm NH4Cl, 5 mm NH4NO3, 5 mm glutamic acid, or 5 mm glutamine as the sole nitrogen source compared with samples from plants treated with 10 mm KNO3. The results from these experiments suggest that in leaves GAD activity is partially controlled by gene expression or RNA stability. Results from preliminary analyses of different tissues imply that these tendencies were not the same in flower stalks and flowers, suggesting that other factors may control GAD activity in these organs. The results from this investigation demonstrate that GAD activity in leaves is altered by different nitrogen treatments, suggesting that GAD2 may play a unique role in nitrogen metabolism.
Resumo:
NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed.
Resumo:
To evaluate the relative importance of ornithine (Orn) as a precursor in proline (Pro) synthesis, we isolated and sequenced a cDNA encoding the Orn-δ-aminotransferase (δ-OAT) from Arabidopsis thaliana. The deduced amino acid sequence showed high homology with bacterial, yeast, mammalian, and plant sequences, and the N-terminal residues exhibited several common features with a mitochondrial transit peptide. Our results show that under both salt stress and normal conditions, δ-OAT activity and mRNA in young plantlets are slightly higher than in older plants. This appears to be related to the necessity to dispose of an easy recycling product, glutamate. Analysis of the expression of the gene revealed a close association with salt stress and Pro production. In young plantlets, free Pro content, Δ1-pyrroline-5-carboxylate synthase mRNA, δ-OAT activity, and δ-OAT mRNA were all increased by salt-stress treatment. These results suggest that for A. thaliana, the Orn pathway, together with the glutamate pathway, plays an important role in Pro accumulation during osmotic stress. Conversely, in 4-week-old A. thaliana plants, although free Pro level also increased under salt-stress conditions, the δ-OAT activity appeared to be unchanged and δ-OAT mRNA was not detectable. Δ1-pyrroline-5-carboxylate synthase mRNA was still induced at a similar level. Therefore, for the adult plants the free Pro increase seemed to be due to the activity of the enzymes of the glutamate pathway.
Resumo:
Dichloroacetamide safeners protect maize (Zea mays L.) against injury from chloroacetanilide and thiocarbamate herbicides. Etiolated maize seedlings have a high-affinity cytosolic-binding site for the safener [3H](R,S)-3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazol-idine ([3H]Saf), and this safener-binding activity (SafBA) is competitively inhibited by the herbicides. The safener-binding protein (SafBP), purified to homogeneity, has a relative molecular weight of 39,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an isoelectric point of 5.5. Antiserum raised against purified SafBP specifically recognizes a 39-kD protein in etiolated maize and sorghum (Sorghum bicolor L.), which have SafBA, but not in etiolated wheat (Triticum aestivum L.), oat (Avena sativa L.), barley (Hordeum vulgare L.), tobacco (Nicotiana tabacum L.), or Arabidopsis, which lack SafBA. SafBP is most abundant in the coleoptile and scarcest in the leaves, consistent with the distribution of SafBA. SBP1, a cDNA encoding SafBP, was cloned using polymerase chain reaction primers based on purified proteolytic peptides. Extracts of Escherichia coli cells expressing SBP1 have strong [3H]Saf binding, which, like binding to the native maize protein, is competitively inhibited by the safener dichlormid and the herbicides S-ethyl dipropylthiocarbamate, alachlor, and metolachlor. SBP1 is predicted to encode a phenolic O-methyltransferase, but SafBP does not O-methylate catechol or caffeic acid. The acquisition of its encoding gene opens experimental approaches for the evaluation of the role of SafBP in response to the relevant safeners and herbicides.
Resumo:
The enzyme 4-coumarate:coenzyme A ligase (4CL) is important in providing activated thioester substrates for phenylpropanoid natural product biosynthesis. We tested different hybrid poplar (Populus trichocarpa × Populus deltoides) tissues for the presence of 4CL isoforms by fast-protein liquid chromatography and detected a minimum of three 4CL isoforms. These isoforms shared similar hydroxycinnamic acid substrate-utilization profiles and were all inactive against sinapic acid, but instability of the native forms precluded extensive further analysis. 4CL cDNA clones were isolated and grouped into two major classes, the predicted amino acid sequences of which were 86% identical. Genomic Southern blots showed that the cDNA classes represent two poplar 4CL genes, and northern blots provided evidence for their differential expression. Recombinant enzymes corresponding to the two genes were expressed using a baculovirus system. The two recombinant proteins had substrate utilization profiles similar to each other and to the native poplar 4CL isoforms (4-coumaric acid > ferulic acid > caffeic acid; there was no conversion of sinapic acid), except that both had relatively high activity toward cinnamic acid. These results are discussed with respect to the role of 4CL in the partitioning of carbon in phenylpropanoid metabolism.