66 resultados para glutamate decarboxylase
Resumo:
Neuronal proliferation, migration, and differentiation are regulated by the sequential expression of particular genes at specific stages of development. Such processes rely on differential gene expression modulated through second-messenger systems. Early postnatal mouse cerebellar granule cells migrate into the internal granular layer and acquire differentiated properties. The neurotransmitter glutamate has been shown to play an important role in this developmental process. We show here by immunohistochemistry that the RelA subunit of the transcription factor NF-kappa B is present in several areas of the mouse brain. Moreover, immunofluorescence microscopy and electrophoretic mobility-shift assay demonstrate that in cerebellar granule cell cultures derived from 3- to 7-day-old mice, glutamate specifically activates the transcription factor NF-kappa B, as shown by binding of nuclear extract proteins to a synthetic oligonucleotide reproducing the kappa B site of human immunodeficiency virus. The use of different antagonists of the glutamate recpetors indicates that the effect of glutamate occurs mainly via N-methyl-D-aspartate (NMDA)-receptor activation, possibly as a result of an increase in intracellular Ca2+. The synaptic specificity of the effect is strongly suggested by the observation that glutamate failed to activate NF-kappa B in astrocytes, while cytokines, such as interleukin 1 alpha and tumor necrosis factor alpha, did so. The effect of glutamate appears to be developmentally regulated. Indeed, NF-kappa B is found in an inducible form in the cytoplasm of neurons of 3- to 7-day-old mice but is constitutively activated in the nuclei of neurons derived from older pups (8-10 days postnatal). Overall, these observations suggest the existence of a new pathway of trans-synaptic regulation of gene expression.
Resumo:
Pulse-like currents resembling miniature postsynaptic currents were recorded in patch-clamped isolated cones from the tiger salamander retina. The events were absent in isolated cones without synaptic terminals. The frequency of events was increased by either raising the osmotic pressure or depolarizing the cell. It was decreased by the application of either glutamate or the glutamate-transport blockers dihydrokainate and D,L-threo-3-hydroxyaspartate. The events required external Na+ for which Li+ could not substitute. The reversal potential of these currents followed the equilibrium potential for Cl- when internal Cl- concentration was changed. Thus, these miniature currents appear to represent the presynaptic activation of the glutamate receptor with glutamate transporter-like pharmacology, caused by the photoreceptor's own vesicular glutamate release. Using a noninvasive method to preserve the intracellular Cl- concentration, we showed that glutamate elicits an outward current in isolated cones. Fluorescence of the membrane-permeable form of fura-2 was used to monitor Ca2+ entry at the cone terminal as a measure of membrane depolarization. The increase in intracellular Ca2+ concentration, elicited by puff application of 30 mM KCl, was completely suppressed in the presence of 100 microM glutamate. Puff application of glutamate alone had no measurable depolarizing effect. These results suggest that the equilibrium potential for Cl-, ECl, was more negative than the activation range for Ca2+ channels and that glutamate elicited an outward current, hyperpolarizing the cones.
Resumo:
Stimulation of muscarinic m1 or m3 receptors can, by generating diacylglycerol and activating protein kinase C, accelerate the breakdown of the amyloid precursor protein (APP) to form soluble, nonamyloidogenic derivatives (APPs), as previously shown. This relationship has been demonstrated in human glioma and neuroblastoma cells, as well as in transfected human embryonic kidney 293 cells and PC-12 cells. We now provide evidence that stimulation of metabotropic glutamate receptors (mGluRs), which also are coupled to phosphatidylinositol 4,5-bisphosphate hydrolysis, similarly accelerates processing of APP into nonamyloidogenic APPs. This process is demonstrated both in hippocampal neurons derived from fetal rats and in human embryonic kidney 293 cells transfected with cDNA expression constructs encoding the mGluR 1 alpha subtype. In hippocampal neurons, both an mGluR antagonist, L-(+)-2-amino-3-phosphonopropionic acid, and an inhibitor of protein kinase C, GF 109203X, blocked the APPs release evoked by glutamate receptor stimulation. Ionotropic glutamate agonists, N-methyl-D-aspartate or S(-)-5-fluorowillardiine, failed to affect APPs release. These data show that selective mGluR agonists that initiate signal-transduction events can regulate APP processing in bona fide primary neurons and transfected cells. As glutamatergic neurons in the cortex and hippocampus are damaged in Alzheimer disease, amyloid production in these regions may be enhanced by deficits in glutamatergic neurotransmission.
Resumo:
Hippocampal neurons maintained in primary culture recycle synaptic vesicles and express functional glutamate receptors since early stages of neuronal development. By analyzing glutamate-induced cytosolic calcium changes to sense presynaptically released neurotransmitter, we demonstrate that the ability of neurons to release glutamate in the extracellular space is temporally coincident with the property of synaptic vesicles to undergo exocytotic-endocytotic recycling. Neuronal differentiation and maturation of synaptic contacts coincide with a change in the subtype of calcium channels primarily involved in controlling neurosecretion. Whereas omega-agatoxin IVA-sensitive channels play a role in controlling neurotransmitter secretion at all stages of neuronal differentiation, omega-conotoxin GVIA-sensitive channels are primarily involved in mediating glutamate release at early developmental stages only.
Resumo:
Single channel recordings demonstrate that ion channels switch stochastically between an open and a closed pore conformation. In search of a structural explanation for this universal open/close behavior, we have uncovered a striking degree of amino acid homology across the pore-forming regions of voltage-gated K channels and glutamate receptors. This suggested that the pores of these otherwise unrelated classes of channels could be structurally conserved. Strong experimental evidence supports a hairpin structure for the pore-forming region of K channels. Consequently, we hypothesized the existence of a similar structure for the pore of glutamate receptors. In ligand-gated channels, the pore is formed by M2, the second of four putative transmembrane segments. A hairpin structure for M2 would affect the subsequent membrane topology, inverting the proposed orientation of the next segments, M3. We have tested this idea for the NR1 subunit of the N-methyl-D-aspartate receptor. Mutations that affected the glycosylation pattern of the NR1 subunit localize both extremes of the M3-M4 linker to the extracellular space. Whole cell currents and apparent agonist affinities were not affected by these mutations. Therefore it can be assumed that they represent the native transmembrane topology. The extracellular assignment of the M3-M4 linker challenged the current topology model by inverting M3. Taken together, the amino acid homology and the new topology suggest that the pore-forming M2 segment of glutamate receptors does not transverse the membrane but, rather, forms a hairpin structure, similar to that found in K channels.
Resumo:
Using an antibody highly specific for D-serine conjugated to glutaraldehyde, we have localized endogenous D-serine in rat brain. Highest levels of D-serine immunoreactivity occur in the gray matter of the cerebral cortex, hippocampus, anterior olfactory nucleus, olfactory tubercle, and amygdala. Localizations of D-serine immunoreactivity correlate closely with those of D-serine binding to the glycine modulatory site of the N-methyl-D-aspartate (NMDA) receptor as visualized by autoradiography and are inversely correlated to the presence of D-amino acid oxidase. D-Serine is enriched in process-bearing glial cells in neuropil with the morphology of protoplasmic astrocytes. In glial cultures of rat cerebral cortex, D-serine is enriched in type 2 astrocytes. The release of D-serine from these cultures is stimulated by agonists of non-NMDA glutamate receptors, suggesting a mechanism by which astrocyte-derived D-serine could modulate neurotransmission. D-Serine appears to be the endogenous ligand for the glycine site of NMDA receptors.