69 resultados para developmental disabled


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The UME6 gene of Saccharomyces cerevisiae was identified as a mitotic repressor of early meiosis-specific gene expression. It encodes a Zn2Cys6 DNA-binding protein which binds to URS1, a promoter element needed for both mitotic repression and meiotic induction of early meiotic genes. This paper demonstrates that a complete deletion of UME6 causes not only vegetative derepression of early meiotic genes during vegetative growth but also a significant reduction in induction of meiosis-specific genes, accompanied by a severe defect in meiotic progression. After initiating premeiotic DNA synthesis the vast majority of cells (approximately 85%) become arrested in prophase and fail to execute recombination; a minority of cells (approximately 15%) complete recombination and meiosis I, and half of these form asci. Quantitative analysis of the same early meiotic transcripts that are vegetatively derepressed in the ume6 mutant, SPO11, SPO13, IME2, and SPO1, indicates a low level of induction in meiosis above their vegetative derepressed levels. In addition, the expression of later meiotic transcripts, SPS2 and DIT1, is significantly delayed and reduced. The expression pattern of early meiotic genes in ume6-deleted cells is strikingly similar to that of early meiotic genes with promoter mutations in URS1. These results support the view that UME6 and URS1 are part of a developmental switch that controls both vegetative repression and meiotic induction of meiosis-specific genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information obtained from studies of developmental and cellular processes in lower organisms is beginning to make significant contributions to the understanding of the pathogenesis of human birth defects, and it is now becoming possible to treat birth defects as inborn errors of development. Mutations in genes for transcription factors, receptors, cell adhesion molecules, intercellular junctions, molecules involved in signal transduction, growth factors, structural proteins, enzymes, and transporters have been identified in genetically caused human malformations and dysplasias. The identification of these mutations and the analysis of their developmental effects have been greatly facilitated by the existence of natural or engineered models in the mouse and even of related mutations in Drosophila, and in some instances a remarkable conservation of function in development has been observed, even between widely separated species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drive on respiration mediated by the peripheral arterial chemoreceptors was assessed by the hyperoxic test in 3-day-old rat pups. They accounted for 22.5 +/- 8.8% during control conditions, but only for 6.9 +/- 10.0% after nicotine exposure, an effect counteracted by blockade of peripheral dopamine type 2 receptors (DA2Rs). Furthermore, nicotine reduced dopamine (DA) content and increased the expression of tyrosine hydroxylase (TH) in the carotid bodies, further suggesting that DA mediates the acute effect of nicotine on arterial chemoreceptor function. During postnatal development TH and DA2R mRNA levels in the carotid bodies decreased. Thus, nicotine from smoking may also interfere with the postnatal resetting of the oxygen sensitivity of the peripheral arterial chemoreceptors by increasing carotid body TH mRNA, as well as DA release in this period. Collectively these effects of nicotine on the peripheral arterial chemoreceptors may increase the vulnerability to hypoxic episodes and attenuate the protective chemoreflex response. These mechanisms may underlie the well-known relation between maternal smoking and sudden infant death syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test whether yeast artificial chromosomes (YACs) can be used in the investigation of mammalian development, we analyzed the phenotypes of transgenic mice carrying two types of beta-globin locus YAC developmental mutants: (i) mice carrying a G-->A transition at position -117 of the A gamma gene, which is responsible for the Greek A gamma form of hereditary persistence of fetal hemoglobin (HPFH), and (ii) beta-globin locus YAC transgenic lines carrying delta- and beta-globin gene deletions with 5' breakpoints similar to those of deletional HPFH and delta beta-thalassemia syndromes. The mice carrying the -117 A gamma G-->A mutation displayed a delayed gamma- to beta-globin gene switch and continued to express A gamma-globin chains in the adult stage of development as expected for carriers of Greek HPFH, indicating that the YAC/transgenic mouse system allows the analysis of the developmental role of cis-acting motifs. The analysis of mice carrying 3' deletions first provided evidence in support of the hypothesis that imported enhancers are responsible for the phenotypes of deletional HPFH and second indicated that autonomous silencing is the primary mechanism for turning off the gamma-globin genes in the adult. Collectively, our results suggest that transgenic mice carrying YAC mutations provide a useful model for the analysis of the control of gene expression during development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomere shortening and telomerase activation in human somatic cells have been implicated in cell immortalization and cellular senescence. To further study the role of telomerase in immortalization, we assayed telomere length and telomerase activity in primary mouse fibroblasts, in spontaneously immortalized cell clones, and in mouse tissues. In the primary cell cultures, telomere length decreased with increased cell doublings and telomerase activity was not detected. In contrast, in spontaneously immortalized clones, telomeres were maintained at a stable length and telomerase activity was present. To determine if telomere shortening occurs in vivo, we assayed for telomerase and telomere length in tissues from mice of different ages. Telomere length was similar among different tissues within a newborn mouse, whereas telomere length differed between tissues in an adult mouse. These findings suggest that there is tissue-specific regulation of mouse telomerase during development and aging in vivo. In contrast to human tissues, most mouse tissues had active telomerase. The presence of telomerase in these tissues may reflect the ease of immortalization of primary mouse cells relative to human cells in culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bcl-2 protooncogene, which protects various cell types from apoptotic cell death, is expressed in the developing and adult nervous system. To explore its role in regulation of neuronal cell death, we generated transgenic mice expressing Bcl-2 under the control of the neuron-specific enolase promoter, which forced expression uniquely in neurons. Sensory neurons isolated from dorsal root ganglia of newborn mice normally require nerve growth factor for their survival in culture, but those from the bcl-2 transgenic mice showed enhanced survival in its absence. Furthermore, apoptotic death of motor neurons after axotomy of the sciatic nerve was inhibited in these mice. The number of neurons in two neuronal populations from the central and peripheral nervous system was increased by 30%, indicating that Bcl-2 expression can protect neurons from cell death during development. The generation of these transgenic mice suggests that Bcl-2 may play an important role in survival of neurons both during development and throughout adult life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The symbiotic pattern of expression of Rhizobium meliloti N2-fixation genes is tightly coupled with the histological organization of the alfalfa root nodule and thus is under developmental control. N2-fixation gene expression is induced very sharply at a particular zone of the nodule called interzone II-III that precedes the zone where N2 fixation takes place. We show here that this coupling can be disrupted, hereby resulting in ectopic expression of N2-fixation genes in the prefixing zone II of the nodule. Uncoupling was obtained either by using a R. meliloti strain in which a mutation rendered N2-fixation gene expression constitutive with respect to oxygen in free-living bacterial cultures or by placing nodules induced by a wild-type R. meliloti strain in a microoxic environment. These results implicate oxygen as a key determinant of the symbiotic pattern of N2-fixation gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetylcholine, one of the main neurotransmitters in the nervous system, is synthesized by the enzyme choline acetyltransferase (ChAT; acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6). The molecular mechanisms controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo are largely unknown. A previous report showed that a 3800-bp, but not a 1450-bp, 5' flanking segment from the rat ChAT gene promoter directed cell type-specific expression of a reporter gene in cholinergic cells in vitro. Now we have characterized a distal regulatory region of the ChAT gene that confers cholinergic specificity on a heterologous downstream promoter in a cholinergic cell line and in transgenic mice. A 2342-bp segment from the 5' flanking region of the ChAT gene behaved as an enhancer in cholinergic cells but as a repressor in noncholinergic cells in an orientation-independent manner. Combined with a heterologous basal promoter, this fragment targeted transgene expression to several cholinergic regions of the central nervous system of transgenic mice, including basal forebrain, cortex, pons, and spinal cord. In eight independent transgenic lines, the pattern of transgene expression paralleled qualitatively and quantitatively that displayed by endogenous ChAT mRNA in various regions of the rat central nervous system. In the lumbar enlargement of the spinal cord, 85-90% of the transgene expression was targeted to the ventral part of the cord, where cholinergic alpha-motor neurons are located. Transgene expression in the spinal cord was developmentally regulated and responded to nerve injury in a similar way as the endogenous ChAT gene, indicating that the 2342-bp regulatory sequence contains elements controlling the plasticity of the cholinergic phenotype in developing and injured neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Xenopus DG42 gene is expressed only between the late midblastula and neurulation stages of embryonic development. Recent database searches show that DG42 has striking sequence similarity to the Rhizobium NodC protein. NodC catalyzes the synthesis of chitin oligosaccharides which subsequently are transformed into bacterium-plant root signaling molecules. We find that the DG42 protein made in an in vitro coupled transcription-translation system catalyzes the synthesis of an array of chitin oligosaccharides. The result suggests the intriguing possibility that a bacterium-plant type of "Nod" signaling system may operate during early stages of vertebrate embryonic development and raises issues about the use of chitin synthase inhibitors as fungal-specific drugs.