78 resultados para crystal purity
Resumo:
The crystal structure of the tyrosine-bound T state of allosteric yeast Saccharomyces cerevisiae chorismate mutase was solved by molecular replacement at a resolution of 2.8 angstroms using a monomer of the R-state structure as the search model. The allosteric inhibitor tyrosine was found to bind in the T state at the same binding site as the allosteric activator tryptophan binds in the R state, thus defining one regulatory binding site for each monomer. Activation by tryptophan is caused by the larger steric size of its side chain, thereby pushing apart the allosteric domain of one monomer and helix H8 of the catalytic domain of the other monomer. Inhibition is caused by polar contacts of tyrosine with Arg-75 and Arg-76 of one monomer and with Gly-141, Ser-142, and Thr-145 of the other monomer, thereby bringing the allosteric and catalytic domains closer together. The allosteric transition includes an 8 degree rotation of each of the two catalytic domains relative to the allosteric domains of each monomer (domain closure). Alternatively, this transition can be described as a 15 degree rotation of the catalytic domains of the dimer relative to each other.
Resumo:
Glycosylation-inhibiting factor (GIF) is a cytokine that is involved in the regulation of IgE synthesis. The crystal structure of recombinant human GIF was determined by the multiple isomorphous replacement method. The structure was refined to an R factor of 0.168 at 1.9 angstrom resolution. The overall structure is seen to consist of three interconnected subunits forming a barrel with three 6-stranded beta-sheets on the inside and six alpha-helices on the outside. There is a 5-angstrom-diameter "hole" through the middle of the barrel. The barrel structure of GIF in part resembles other "trefoil" cytokines such as interleukin 1 and fibroblast growth factor. Each subunit has a new class of alpha + beta sandwich structure consisting of two beta-alpha-beta motifs. These beta-alpha-beta motifs are related by a pseudo-twofold axis and resemble both interleukin 8 and the peptide binding domain of major histocompatibility complex protein, although the topology of the polypeptide chain is quite different.
Resumo:
The human immunodeficiency virus type 1 (HIV-1) matrix protein forms a structural shell associated with the inner viral membrane and performs other essential functions throughout the viral life cycle. The crystal structure of the HIV-1 matrix protein, determined at 2.3 angstrom resolution, reveals that individual matrix molecules are composed of five major helices capped by a three-stranded mixed beta-sheet. Unexpectedly, the protein assembles into a trimer in three different crystal lattices, burying 1880 angstrom2 of accessible surface area at the trimer interfaces. Trimerization appears to create a large, bipartite membrane binding surface in which exposed basic residues could cooperate with the N-terminal myristoyl groups to anchor the protein on the acidic inner membrane of the virus.
Resumo:
The diffusion equation method of global minimization is applied to compute the crystal structure of S6, with no a priori knowledge about the system. The experimental lattice parameters and positions and orientations of the molecules in the unit cell are predicted correctly.
Resumo:
Cytochrome oxidase is a membrane protein complex that catalyzes reduction of molecular oxygen to water and utilizes the free energy of this reaction to generate a transmembrane proton gradient during respiration. The electron entry site in subunit II is a mixed-valence dinuclear copper center in enzymes that oxidize cytochrome c. This center has been lost during the evolution of the quinoloxidizing branch of cytochrome oxidases but can be restored by engineering. Herein we describe the crystal structures of the periplasmic fragment from the wild-type subunit II (CyoA) of Escherichia coli quinol oxidase at 2.5-A resolution and of the mutant with the engineered dinuclear copper center (purple CyoA) at 2.3-A resolution. CyoA is folded as an 11-stranded mostly antiparallel beta-sandwich followed by three alpha-helices. The dinuclear copper center is located at the loops between strands beta 5-beta 6 and beta 9-beta 10. The two coppers are at a 2.5-A distance and symmetrically coordinated to the main ligands that are two bridging cysteines and two terminal histidines. The residues that are distinct in cytochrome c and quinol oxidases are around the dinuclear copper center. Structural comparison suggests a common ancestry for subunit II of cytochrome oxidase and blue copper-binding proteins.
Resumo:
Rhodopsin is the G protein-coupled receptor that upon light activation triggers the visual transduction cascade. Rod cell outer segment disc membranes were isolated from dark-adapted frog retinas and were extracted with Tween detergents to obtain two-dimensional rhodopsin crystals for electron crystallography. When Tween 80 was used, tubular structures with a p2 lattice (a = 32 A, b = 83 A, gamma = 91 degrees) were formed. The use of a Tween 80/Tween 20 mixture favored the formation of larger p22(1)2(1) lattices (a = 40 A, b = 146 A, gamma = 90 degrees). Micrographs from frozen hydrated frog rhodopsin crystals were processed, and projection structures to 7-A resolution for the p22(1)2(1) form and to 6-A resolution for the p2 form were calculated. The maps of frog rhodopsin in both crystal forms are very similar to the 9-A map obtained previously for bovine rhodopsin and show that the arrangement of the helices is the same. In a tentative topographic model, helices 4, 6, and 7 are nearly perpendicular to the plane of the membrane. In the higher-resolution projection maps of frog rhodopsin, helix 5 looks more tilted than it appeared previously. The quality of the two frog rhodopsin crystals suggests that they would be suitable to obtain a three-dimensional structure in which all helices would be resolved.
Resumo:
The x-ray structure of the complex of a catalytic antibody Fab fragment with a phosphonate transition-state analog has been determined. The antibody (CNJ206) catalyzes the hydrolysis of p-nitrophenyl esters with significant rate enhancement and substrate specificity. Comparison of this structure with that of the uncomplexed Fab fragment suggests hapten-induced conformational changes: the shape of the combining site changes from a shallow groove in the uncomplexed Fab to a deep pocket where the hapten is buried. Three hydrogen-bond donors appear to stabilize the charged phosphonate group of the hapten: two NH groups of the heavy (H) chain complementarity-determining region 3 (H3 CDR) polypeptide chain and the side-chain of histidine-H35 in the H chain (His-H35) in the H1 CDR. The combining site shows striking structural similarities to that of antibody 17E8, which also has esterase activity. Both catalytic antibody ("abzyme") structures suggest that oxyanion stabilization plays a significant role in their rate acceleration. Additional catalytic groups that improve efficiency are not necessarily induced by the eliciting hapten; these groups may occur because of the variability in the combining sites of different monoclonal antibodies that bind to the same hapten.
Resumo:
The crystal structure of the Glu-105-->Gly mutant of catabolic ornithine transcarbamoylase (OTCase; carbamoyl phosphate + L-ornithine = orthophosphate + L-citrulline, EC 2.1.3.3) from Pseudomonas aeruginosa has been determined at 3.0-A resolution. This mutant is blocked in the active R (relaxed) state. The structure was solved by the molecular replacement method, starting from a crude molecular model built from a trimer of the catalytic subunit of another transcarbamoylase, the extensively studied aspartate transcarbamoylase (ATCase) from Escherichia coli. This model was used to generate initial low-resolution phases at 8-A resolution, which were extended to 3-A by noncrystallographic symmetry averaging. Four phase extensions were required to obtain an electron density map of very high quality from which the final model was built. The structure, including 4020 residues, has been refined to 3-A, and the current crystallographic R value is 0.216. No solvent molecules have been added to the model. The catabolic OTCase is a dodecamer composed of four trimers organized in a tetrahedral manner. Each monomer is composed of two domains. The carbamoyl phosphate binding domain shows a strong structural homology with the equivalent ATCase part. In contrast, the other domain, mainly implicated in the binding of the second substrate (ornithine for OTCase and aspartate for ATCase) is poorly conserved. The quaternary structures of these two allosteric transcarbamoylases are quite divergent: the E. coli ATCase has pseudo-32 point-group symmetry, with six catalytic and six regulatory chains; the catabolic OTCase has 23 point-group symmetry and only catalytic chains. However, both enzymes display homotropic and heterotropic cooperativity.
Resumo:
The crystal structure of the decanucleotide d(CGCAATTGCG)2 has been solved by a combination of molecular replacement and heavy-atom procedures and has been refined to an R factor of 20.2% at 2.7 A. It is not a fully base-paired duplex but has a central core of eight Watson-Crick base pairs flanked by unpaired terminal guanosines and cytosines. These participate in hydrogen-bonding arrangements with adjacent decamer duplexes in the crystal lattice. The unpaired guanosines are bound in the G+C regions of duplex minor grooves. The cytosines have relatively high mobility, even though they are constrained to be in one region where they are involved in base-paired triplets with G.C base pairs. The 5'-AATT sequence in the duplex region has a narrow minor groove, providing further confirmation of the sequence-dependent nature of groove width.
Resumo:
The crystal structure of the pheromone Er-1 from the unicellular eukaryotic organism Euplotes raikovi was determined at 1.6 A resolution and refined to a crystallographic R factor of 19.9%. In the tightly packed crystal, two extensive intermolecular helix-helix interactions arrange the Er-1 molecules into layers. Since the putative receptor of the pheromone is a membrane-bound protein, whose extracellular C-terminal domain is identical in amino acid sequence to the soluble pheromone, the interactions found in the crystal may mimic the pheromone-receptor interactions as they occur on a cell surface. Based on this, we propose a model for the interaction between soluble pheromone molecules and their receptors. In this model, strong pheromone-receptor binding emerges as a consequence of the cooperative utilization of several weak interactions. The model offers an explanation for the results of binding studies and may also explain the adhesion between cells that occurs during mating.
Resumo:
The Schizosaccharomyces pombe cell cycle-regulatory protein suc1, named as the suppressor of cdc2 temperature-sensitive mutations, is essential for cell cycle progression. To understand suc1 structure-function relationships and to help resolve conflicting interpretations of suc1 function based on genetic studies of suc1 and its functional homologs in both lower and higher eukaryotes, we have determined the crystal structure of the beta-interchanged suc1 dimer. Each domain consists of three alpha-helices and a four-stranded beta-sheet, completed by the interchange of terminal beta-strands between the two subunits. This beta-interchanged suc1 dimer, when compared with the beta-hairpin single-domain folds of suc1, reveals a beta-hinge motif formed by the conserved amino acid sequence HVPEPH. This beta-hinge mediates the subunit conformation and assembly of suc1: closing produces the intrasubunit beta-hairpin and single-domain fold, whereas opening leads to the intersubunit beta-strand interchange and interlocked dimer assembly reported here. This conformational switch markedly changes the surface accessibility of sequence-conserved residues available for recognition of cyclin-dependent kinase, suggesting a structural mechanism for beta-hinge-mediated regulation of suc1 biological function. Thus, suc1 belongs to the family of domain-swapping proteins, consisting of intertwined and dimeric protein structures in which the dual assembly modes regulate their function.
Resumo:
We report the 1.8-A crystal structure of the CD11a I-domain with bound manganese ion. The CD11a I-domain contains binding sites for intercellular adhesion molecules 1 and 3 and can exist in both low- and high-affinity states. The metal-bound form reported here is likely to represent a high-affinity state. The CD11a I-domain structure reveals a strained hydrophobic ridge adjacent to the bound metal ion that may serve as a ligand-binding surface and is likely to rearrange in the absence of bound metal ion. The CD11a I-domain is homologous to domains found in von Willebrand factor, and mapping of mutations found in types 2a and 2b von Willebrand disease onto this structure allows consideration of the molecular basis of these forms of the disease.
Resumo:
The crystal structure of the large fragment of the Thermus aquaticus DNA polymerase (Klentaq1), determined at 2.5-A resolution, demonstrates a compact two-domain architecture. The C-terminal domain is identical in fold to the equivalent region of the Klenow fragment of Escherichia coli DNA polymerase I (Klenow pol I). Although the N-terminal domain of Klentaq1 differs greatly in sequence from its counterpart in Klenow pol I, it has clearly evolved from a common ancestor. The structure of Klentaq1 reveals the strategy utilized by this protein to maintain activity at high temperatures and provides the structural basis for future improvements of the enzyme.
Resumo:
Domain III of Pseudomonas aeruginosa exotoxin A catalyses the transfer of ADP-ribose from NAD to a modified histidine residue of elongation factor 2 in eukaryotic cells, thus inactivating elongation factor 2. This domain III is inactive in the intact toxin but is active in the isolated form. We report here the 2.5-A crystal structure of this isolated domain crystallized in the presence of NAD and compare it with the corresponding structure in the intact Pseudomonas aeruginosa exotoxin A. We observe a significant conformational difference in the active site region from Arg-458 to Asp-463. Contacts with part of domain II in the intact toxin prevent the adoption of the isolated domain conformation and provide a structural explanation for the observed inactivity. Additional electron density in the active site region corresponds to separate AMP and nicotinamide and indicates that the NAD has been hydrolyzed. The structure has been compared with the catalytic domain of the diphtheria toxin, which was crystallized with ApUp.
Resumo:
Paclitaxel (formerly called taxol), an important anticancer drug, inhibits cell replication by binding to and stabilizing microtubule polymers. As drug-receptor interactions are governed by the three-dimensional stereochemistries of both participants, we have determined the crystal structure of paclitaxel to identify its conformational preferences that may be related to biological activity. The monoclinic crystals contain two independent paclitaxel molecules in the asymmetric unit plus several water and dioxane solvent molecules. Taxane ring conformation is very similar in both paclitaxel molecules and is similar to the taxane ring conformation found in the crystal structure of the paclitaxel analogue docetaxel (formerly called taxotere). The two paclitaxel molecules have carbon-13 side-chain conformations that differ from each other and from that of the corresponding side chain in the docetaxel crystal structure. The carbon-13 side-chain conformation of one paclitaxel molecule is similar to what was proposed from NMR studies done in polar solvents, while that of the other paclitaxel molecule is different and hitherto unobserved. The paclitaxel molecules interact with each other and with solvent atoms through an extensive network of hydrogen bonds. Analysis of the hydrogen-bonding network together with structure-activity studies may suggest which atoms of paclitaxel are important for binding to microtubule receptors.