80 resultados para cell-assembly


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (Jahraus et al., 1998). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (Defacque et al., 2000a), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear speckles (speckles) represent a distinct nuclear compartment within the interchromatin space and are enriched in splicing factors. They have been shown to serve neighboring active genes as a reservoir of these factors. In this study, we show that, in HeLa cells, the (pre)spliceosomal assembly on precursor mRNA (pre-mRNA) is associated with the speckles. For this purpose, we used microinjection of splicing competent and mutant adenovirus pre-mRNAs with differential splicing factor binding, which form different (pre)spliceosomal complexes and followed their sites of accumulation. Splicing competent pre-mRNAs are rapidly targeted into the speckles, but the targeting is temperature-dependent. The polypyrimidine tract sequence is required for targeting, but, in itself, is not sufficient. The downstream flanking sequences are particularly important for the targeting of the mutant pre-mRNAs into the speckles. In supportive experiments, the behavior of the speckles was followed after the microinjection of antisense deoxyoligoribonucleotides complementary to the specific domains of snRNAs. Under these latter conditions prespliceosomal complexes are formed on endogenous pre-mRNAs. We conclude that the (pre)spliceosomal complexes on microinjected pre-mRNA are formed inside the speckles. Their targeting into and accumulation in the speckles is a result of the cumulative loading of splicing factors to the pre-mRNA and the complexes formed give rise to the speckled pattern observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stathmin/Op 18 is a microtubule (MT) dynamics-regulating protein that has been shown to have both catastrophe-promoting and tubulin-sequestering activities. The level of stathmin/Op18 phosphorylation was proved both in vitro and in vivo to be important in modulating its MT-destabilizing activity. To understand the in vivo regulation of stathmin/Op18 activity, we investigated whether MT assembly itself could control phosphorylation of stathmin/Op18 and thus its MT-destabilizing activity. We found that MT nucleation by centrosomes from Xenopus sperm or somatic cells and MT assembly promoted by dimethyl sulfoxide or paclitaxel induced stathmin/Op18 hyperphosphorylation in Xenopus egg extracts, leading to new stathmin/Op18 isoforms phosphorylated on Ser 16. The MT-dependent phosphorylation of stathmin/Op18 took place in interphase extracts as well, and was also observed in somatic cells. We show that the MT-dependent phosphorylation of stathmin/Op18 on Ser 16 is mediated by an activity associated to the MTs, and that it is responsible for the stathmin/Op18 hyperphosphorylation reported to be induced by the addition of “mitotic chromatin.” Our results suggest the existence of a positive feedback loop, which could represent a novel mechanism contributing to MT network control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient motility of the eukaryotic flagellum requires precise temporal and spatial control of its constituent dynein motors. The central pair and its associated structures have been implicated as important members of a signal transduction cascade that ultimately regulates dynein arm activity. To identify central pair components involved in this process, we characterized a Chlamydomonas motility mutant (pf6-2) obtained by insertional mutagenesis. pf6-2 flagella twitch ineffectively and lack the 1a projection on the C1 microtubule of the central pair. Transformation with constructs containing a full-length, wild-type copy of the PF6 gene rescues the functional, structural, and biochemical defects associated with the pf6 mutation. Sequence analysis indicates that the PF6 gene encodes a large polypeptide that contains numerous alanine-rich, proline-rich, and basic domains and has limited homology to an expressed sequence tag derived from a human testis cDNA library. Biochemical analysis of an epitope-tagged PF6 construct demonstrates that the PF6 polypeptide is an axonemal component that cosediments at 12.6S with several other polypeptides. The PF6 protein appears to be an essential component required for assembly of some of these polypeptides into the C1-1a projection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription by RNA polymerase I in Saccharomyces cerevisiae requires a series of transcription factors that have been genetically and biochemically identified. In particular, the core factor (CF) and the upstream activation factor (UAF) have been shown in vitro to bind the core element and the upstream promoter element, respectively. We have analyzed in vivo the DNAse I footprinting of the 35S promoter in wild-type and mutant strains lacking one specific transcription factor at the time. In this way we were able to unambiguously attribute the protections by the CF and the UAF to their respective putative binding sites. In addition, we have found that in vivo a binding hierarchy exists, the UAF being necessary for CF binding. Because the CF footprinting is lost in mutants lacking a functional RNA polymerase I, we also conclude that the final step of preinitiation-complex assembly affects binding of the CF, stabilizing its contact with DNA. Thus, in vivo, the CF is recruited to the core element by the UAF and stabilized on DNA by the presence of a functional RNA polymerase I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Profilins are thought to play a central role in the regulation of de novo actin assembly by preventing spontaneous actin polymerization through the binding of actin monomers, and the adding of monomeric actin to the barbed actin-filament ends. Other cellular functions of profilin in membrane trafficking and lipid based signaling are also likely. Binding of profilins to signaling molecules such as Arp2/3 complex, Mena, VASP, N-WASP, dynamin I, and others, further implicates profilin and actin as regulators of diverse motile activities. In mouse, two profilins are expressed from two distinct genes. Profilin I is expressed at high levels in all tissues and throughout development, whereas profilin II is expressed in neuronal cells. To examine the function of profilin I in vivo, we generated a null profilin I (pfn1ko) allele in mice. Homozygous pfn1ko/ko mice are not viable. Pfn1ko/ko embryos died as early as the two-cell stage, and no pfn1ko/ko blastocysts were detectable. Adult pfn1ko/wt mice show a 50% reduction in profilin I expression with no apparent impairment of cell function. However, pfn1ko/wt embryos have reduced survival during embryogenesis compared with wild type. Although weakly expressed in early embryos, profilin II cannot compensate for lack of profilin I. Our results indicate that mouse profilin I is an essential protein that has dosage-dependent effects on cell division and survival during embryogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discovered that a shift between the state of tumorigenicity and dormancy in human carcinoma (HEp3) is attained through regulation of the balance between two classical mitogen-activated protein kinase (MAPK)-signaling pathways, the mitogenic extracellular regulated kinase (ERK) and the apoptotic/growth suppressive stress-activated protein kinase 2 (p38MAPK), and that urokinase plasminogen activator receptor (uPAR) is an important regulator of these events. This is a novel function for uPAR whereby, when expressed at high level, it enters into frequent, activating interactions with the α5β1-integrin, which facilitates the formation of insoluble fibronectin (FN) fibrils. Activation of α5β1-integrin by uPAR generates persistently high level of active ERK necessary for tumor growth in vivo. Our results show that ERK activation is generated through a convergence of two pathways: a positive signal through uPAR-activated α5β1, which activates ERK, and a signal generated by the presence of FN fibrils that suppresses p38 activity. When fibrils are removed or their assembly is blocked, p38 activity increases. Low uPAR derivatives of HEp3 cells, which are growth arrested (dormant) in vivo, have a high p38/ERK activity ratio, but in spite of a similar level of α5β1-integrin, they do not assemble FN fibrils. However, when p38 activity is inhibited by pharmacological (SB203580) or genetic (dominant negative-p38) approaches, their ERK becomes activated, uPAR is overexpressed, α5β1-integrins are activated, and dormancy is interrupted. Restoration of these properties in dormant cells can be mimicked by a direct re-expression of uPAR through transfection with a uPAR-coding plasmid. We conclude that overexpression of uPAR and its interaction with the integrin are responsible for generating two feedback loops; one increases the ERK activity that feeds back by increasing the expression of uPAR. The second loop, through the presence of FN fibrils, suppresses p38 activity, further increasing ERK activity. Together these results indicate that uPAR and its interaction with the integrin should be considered important targets for induction of tumor dormancy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic cells contain many actin-interacting proteins, including the α-actinins and the fimbrins, both of which have actin cross-linking activity in vitro. We report here the identification and characterization of both an α-actinin-like protein (Ain1p) and a fimbrin (Fim1p) in the fission yeast Schizosaccharomyces pombe. Ain1p localizes to the actomyosin-containing medial ring in an F-actin–dependent manner, and the Ain1p ring contracts during cytokinesis. ain1 deletion cells have no obvious defects under normal growth conditions but display severe cytokinesis defects, associated with defects in medial-ring and septum formation, under certain stress conditions. Overexpression of Ain1p also causes cytokinesis defects, and the ain1 deletion shows synthetic effects with other mutations known to affect medial-ring positioning and/or organization. Fim1p localizes both to the cortical actin patches and to the medial ring in an F-actin–dependent manner, and several lines of evidence suggest that Fim1p is involved in polarization of the actin cytoskeleton. Although a fim1 deletion strain has no detectable defect in cytokinesis, overexpression of Fim1p causes a lethal cytokinesis defect associated with a failure to form the medial ring and concentrate actin patches at the cell middle. Moreover, an ain1 fim1 double mutant has a synthetical-lethal defect in medial-ring assembly and cell division. Thus, Ain1p and Fim1p appear to have an overlapping and essential function in fission yeast cytokinesis. In addition, protein-localization and mutant-phenotype data suggest that Fim1p, but not Ain1p, plays important roles in mating and in spore formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that an E146D site-directed variant of the Azotobacter vinelandii iron protein (Fe protein) is specifically defective in its ability to participate in iron-molybdenum cofactor (FeMoco) insertion. Molybdenum-iron protein (MoFe protein) from the strain expressing the E146D Fe protein is partially (≈45%) FeMoco deficient. The “free” FeMoco that is not inserted accumulates in the cell. We were able to insert this “free” FeMoco into the partially pure FeMoco-deficient MoFe protein. This insertion reaction required crude extract of the ΔnifHDK A. vinelandii strain CA12, Fe protein and MgATP. We used this as an assay to purify a required “insertion” protein. The purified protein was identified as GroEL, based on the molecular mass of its subunit (58.8 kDa), crossreaction with commercially available antibodies raised against E. coli GroEL, and its NH2-terminal polypeptide sequence. The NH2-terminal polypeptide sequence showed identity of up to 84% to GroEL from various organisms. Purified GroEL of A. vinelandii alone or in combination with MgATP and Fe protein did not support the FeMoco insertion into pure FeMoco-deficient MoFe protein, suggesting that there are still other proteins and/or factors missing. By using GroEL-containing extracts from a ΔnifHDK strain of A. vinelandii CA12 along with FeMoco, Fe protein, and MgATP, we were able to supply all required proteins and/or factors and obtained a fully active reconstituted E146D nifH MoFe protein. The involvement of the molecular chaperone GroEL in the insertion of a metal cluster into an apoprotein may have broad implications for the maturation of other metalloenzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent evidence emerging from several laboratories, integrated with new data obtained by searching the genome databases, suggests that the area code hypothesis provides a good heuristic model for explaining the remarkable specificity of cell migration and tissue assembly that occurs throughout embryogenesis. The area code hypothesis proposes that cells assemble organisms, including their brains and nervous systems, with the aid of a molecular-addressing code that functions much like the country, area, regional, and local portions of the telephone dialing system. The complexity of the information required to code cells for the construction of entire organisms is so enormous that we assume that the code must make combinatorial use of members of large multigene families. Such a system would reuse the same receptors as molecular digits in various regions of the embryo, thus greatly reducing the total number of genes required. We present the hypothesis that members of the very large families of olfactory receptors and vomeronasal receptors fulfill the criteria proposed for area code molecules and could serve as the last digits in such a code. We discuss our evidence indicating that receptors of these families are expressed in many parts of developing embryos and suggest that they play a key functional role in cell recognition and targeting not only in the olfactory system but also throughout the brain and numerous other organs as they are assembled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tom40 is the major subunit of the translocase of the outer mitochondrial membrane (the TOM complex). To study the assembly pathway of Tom40, we have followed the integration of the protein into the TOM complex in vitro and in vivo using wild-type and altered versions of the Neurospora crassa Tom40 protein. Upon import into isolated mitochondria, Tom40 precursor proteins lacking the first 20 or the first 40 amino acid residues were assembled as the wild-type protein. In contrast, a Tom40 precursor lacking residues 41 to 60, which contains a highly conserved region of the protein, was arrested at an intermediate stage of assembly. We constructed mutant versions of Tom40 affecting this region and transformed the genes into a sheltered heterokaryon containing a tom40 null nucleus. Homokaryotic strains expressing the mutant Tom40 proteins had growth rate defects and were deficient in their ability to form conidia. Analysis of the TOM complex in these strains by blue native gel electrophoresis revealed alterations in electrophoretic mobility and a tendency to lose Tom40 subunits from the complex. Thus, both in vitro and in vivo studies implicate residues 41 to 60 as containing a sequence required for proper assembly/stability of Tom40 into the TOM complex. Finally, we found that TOM complexes in the mitochondrial outer membrane were capable of exchanging subunits in vitro. A model is proposed for the integration of Tom40 subunits into the TOM complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Achnanthes longipes is a marine, biofouling diatom that adheres to surfaces via adhesive polymers extruded during motility or organized into structures called stalks that contain three distinct regions: the pad, shaft, and collar. Four monoclonal antibodies (AL.C1–AL.C4) and antibodies from two uncloned hybridomas (AL.E1 and AL.E2) were raised against the extracellular adhesives of A. longipes. Antibodies were screened against a hot-water-insoluble/hot-bicarbonate-soluble-fraction. The hot-water-insoluble/hot-bicarbonate-soluble fraction was fractionated to yield polymers in three size ranges: F1, ≥ 20,000,000 Mr; F2, ≅100,000 Mr; and F3, <10,000 Mr relative to dextran standards. The ≅100,000-Mr fraction consisted of highly sulfated (approximately 11%) fucoglucuronogalactans (FGGs) and low-sulfate (approximately 2%) FGGs, whereas F1 was composed of O-linked FGG (F2)-polypeptide (F3) complexes. AL.C1, AL.C2, AL.C4, AL.E1, and AL.E2 recognized carbohydrate complementary regions on FGGs, with antigenicity dependent on fucosyl-containing side chains. AL.C3 was unique in that it had a lower affinity for FGGs and did not label any portion of the shaft. Enzyme-linked immunosorbent assay and immunocytochemistry indicated that low-sulfate FGGs are expelled from pores surrounding the raphe terminus, creating the cylindrical outer layers of the shaft, and that highly sulfated FGGs are extruded from the raphe, forming the central core. Antibody-labeling patterns and other evidence indicated that the shaft central-core region is related to material exuded from the raphe during cell motility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Saccharomyces cerevisiae, entry into mitosis requires activation of the cyclin-dependent kinase Cdc28 in its cyclin B (Clb)-associated form. Clb-bound Cdc28 is susceptible to inhibitory tyrosine phosphorylation by Swe1 protein kinase. Swe1 is itself negatively regulated by Hsl1, a Nim1-related protein kinase, and by Hsl7, a presumptive protein-arginine methyltransferase. In vivo all three proteins localize to the bud neck in a septin-dependent manner, consistent with our previous proposal that formation of Hsl1-Hsl7-Swe1 complexes constitutes a checkpoint that monitors septin assembly. We show here that Hsl7 is phosphorylated by Hsl1 in immune-complex kinase assays and can physically associate in vitro with either Hsl1 or Swe1 in the absence of any other yeast proteins. With the use of both the two-hybrid method and in vitro binding assays, we found that Hsl7 contains distinct binding sites for Hsl1 and Swe1. A differential interaction trap approach was used to isolate four single-site substitution mutations in Hsl7, which cluster within a discrete region of its N-terminal domain, that are specifically defective in binding Hsl1. When expressed in hsl7Δ cells, each of these Hsl7 point mutants is unable to localize at the bud neck and cannot mediate down-regulation of Swe1, but retains other functions of Hsl7, including oligomerization and association with Swe1. GFP-fusions of these Hsl1-binding defective Hsl7 proteins localize as a bright perinuclear dot, but never localize to the bud neck; likewise, in hsl1Δ cells, a GFP-fusion to wild-type Hsl7 or native Hsl7 localizes to this dot. Cell synchronization studies showed that, normally, Hsl7 localizes to the dot, but only in cells in the G1 phase of the cell cycle. Immunofluorescence analysis and immunoelectron microscopy established that the dot corresponds to the outer plaque of the spindle pole body (SPB). These data demonstrate that association between Hsl1 and Hsl7 at the bud neck is required to alleviate Swe1-imposed G2-M delay. Hsl7 localization at the SPB during G1 may play some additional role in fine-tuning the coordination between nuclear and cortical events before mitosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The B cell antigen receptor (BCR) consists of the membrane-bound immunoglobulin (mIg) molecule and the Ig-alpha/Ig-beta heterodimer, which functions as signaling subunit of the receptor. Stimulation of the BCR activates protein tyrosine kinases (PTKs) that phosphorylate a number of substrate proteins, including the Ig-alpha/Ig-beta heterodimer of the BCR itself. How the PTKs become activated after BCR engagement is not known at present. Here, we show that BCR-negative J558L cells treated with the protein tyrosine phosphatase inhibitor pervanadate/H2O2 display only a weak substrate phosphorylation. However, in BCR-positive transfectants of J558L, treatment with pervanadate/H2O2 induces a strong phosphorylation of several substrate proteins. Treatment with pervanadate/H2O2 does not result in receptor crosslinking, yet the pattern of protein phosphorylation is similar to that observed after BCR stimulation by antigen. The response requires cellular integrity because tyrosine phosphorylation of most substrates is not visible in cell lysates. Cells that express a BCR containing an Ig-alpha subunit with a mutated immunoreceptor tyrosine-based activation motif display a delayed response. The data suggest that, once expressed on the surface, the BCR organizes protein tyrosine phosphatases, PTKs, and their substrates into a transducer complex that can be activated by pervanadate/H202 in the absence of BCR crosslinking. Assembly of this preformed complex seems to be a prerequisite for BCR-mediated signal transduction.