84 resultados para X RECEPTOR ACTIVATORS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of gene-targeted mice deficient in the urokinase-type plasminogen activator (uPA), urokinase receptor (uPAR), tissue-type plasminogen activator (tPA), and plasminogen permits a critical, genetic-based analysis of the physiological and pathological roles of the two mammalian plasminogen activators. We report a comparative study of animals with individual and combined deficits in uPAR and tPA and show that these proteins are complementary fibrinolytic factors in mice. Sinusoidal fibrin deposits are found within the livers of nearly all adult mice examined with a dual deficiency in uPAR and tPA, whereas fibrin deposits are never found in livers collected from animals lacking uPAR and rarely detected in animals lacking tPA alone. This is the first demonstration that uPAR has a physiological role in fibrinolysis. However, uPAR-/-/tPA-/- mice do not develop the pervasive, multi-organ fibrin deposits, severe tissue damage, reduced fertility, and high morbidity and mortality observed in mice with a combined deficiency in tPA and the uPAR ligand, uPA. Furthermore, uPAR-/-/tPA-/- mice do not exhibit the profound impairment in wound repair seen in uPA-/-/tPA-/- mice when they are challenged with a full-thickness skin incision. These results indicate that plasminogen activation focused at the cell surface by uPAR is important in fibrin surveillance in the liver, but that uPA supplies sufficient fibrinolytic potential to clear fibrin deposits from most tissues and support wound healing without the benefit of either uPAR or tPA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stimulatory guanine nucleotide binding protein (Gs)-coupled receptors activated by luteinizing hormone, vasopressin, and the catecholamine isoproterenol (luteinizing hormone receptor, type 2 vasopressin receptor, and types 1 and 2 beta-adrenergic receptors) and the Gi-coupled M2 muscarinic receptor (M2R) were expressed transiently in COS cells, alone and in combination with Gbeta gamma dimers, their corresponding Galphas (Galpha(s), or Galpha(i3)) and either Galpha(q) or Galpha(16). Phospholipase C (PLC) activity, assessed by inositol phosphate production from preincorporated myo[3H]inositol, was then determined to gain insight into differential coupling preferences among receptors and G proteins. The following were observed: (i) All receptors tested were able to stimulate PLC activity in response to agonist occupation. The effect of the M2R was pertussis toxin sensitive. (ii) While, as expected, expression of Galpha(q) facilitated an agonist-induced activation of PLC that varied widely from receptor to receptor (400% with type 2 vasopressin receptor and only 30% with M2R), expression of Galpha(16) facilitated about equally well the activation of PLC by any of the tested receptors and thus showed little if any discrimination for one receptor over another. (iii) Gbeta gamma elevated basal (agonist independent) PLC activity between 2- and 4-fold, confirming the proven ability of Gbeta gamma to stimulate PLCbeta. (iv) Activation of expressed receptors by their respective ligands in cells coexpressing excess Gbeta gamma elicited agonist stimulated PLC activities, which, in the case of the M2R, was not blocked by pertussis toxin (PTX), suggesting mediation by a PTX-insensitive PLC-stimulating Galpha subunit, presumably, but not necessarily, of the Gq family. (v) The effects of Gbeta gamma and the PTX-insensitive Galpha elicited by M2R were synergistic, suggesting the possibility that one or more forms of PLC are under conditional or dual regulation of G protein subunits such that stimulation by one sensitizes to the stimulation by the other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aspartate receptor of bacterial chemotaxis is representative of a large class of membrane-spanning receptors found in prokaryotic and eukaryotic organisms. These receptors, which regulate histidine kinase pathways and possess two putative transmembrane helices per subunit, appear to control a wide variety of cellular processes. The best characterized subgroup of the two-helix receptor class is the homologous family of chemosensory receptors from Escherichia coli and Salmonella typhimurium, including the aspartate receptor. This receptor binds aspartate, an attractant, in the periplasmic compartment and undergoes an intramolecular, transmembrane conformational change, thereby modulating the autophosphorylation rate of a bound histidine kinase in the cytoplasm. Here, we analyze recent results from x-ray crystallographic, solution 19F NMR, and engineered disulfide studies probing the aspartate-induced structural change within the periplasmic and transmembrane regions of the receptor. Together, these approaches provide evidence that aspartate binding triggers a "swinging-piston" displacement of the second membrane-spanning helix, which is proposed to communicate the signal across the bilayer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have isolated an Arabidopsis thaliana gene that codes for a receptor related to antifungal pathogenesis-related (PR) proteins. The PR5K gene codes for a predicted 665-amino acid polypeptide that comprises an extracellular domain related to the PR5 proteins, a central transmembrane-spanning domain, and an intracellular protein-serine/threonine kinase. The extracellular domain of PR5K (PR5-like receptor kinase) is most highly related to acidic PR5 proteins that accumulate in the extracellular spaces of plants challenged with pathogenic microorganisms. The kinase domain of PR5K is related to a family of protein-serine/threonine kinases that are involved in the expression of self-incompatibility and disease resistance. PR5K transcripts accumulate at low levels in all tissues examined, although particularly high levels are present in roots and inflorescence stems. Treatments that induce authentic PR5 proteins had no effect on the level of PR5K transcripts, suggesting that the receptor forms part of a preexisting surveillance system. When the kinase domain of PR5K was expressed in Escherichia coli, the resulting polypeptide underwent autophosphorylation, consistent with its predicted enzyme activity. These results are consistent with PR5K encoding a functional receptor kinase. Moreover, the structural similarity between the extracellular domain of PR5K and the antimicrobial PR5- proteins suggests a possible interaction with common or related microbial targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the earliest events induced by interleukin 2 (IL-2) is tyrosine phosphorylation of cellular proteins, including the IL-2 receptor beta chain (IL-2Rbeta). Simultaneous mutation of three tyrosines (Y338, Y392, and Y510) in the IL-2Rbeta cytoplasmic domain abrogated IL-2-induced proliferation, whereas mutation of only Y338 or of Y392 and Y510 inhibited proliferation only partially. While Y392 and Y510 were critical for IL-2-induced activation of signal transducers and activators of transcription (STAT proteins), Y338 was required for Shc-IL-2Rbeta association and for IL-2-induced tyrosine phosphorylation of Shc. Thus, activation of both Jak-STAT and Shc-coupled signaling pathways requires specific IL-2Rbeta tyrosines that together act in concert to mediate maximal proliferation. In COS-7 cells, overexpression of Jak1 augmented phosphorylation of Y338 as well as Y392 and Y510, suggesting that the role for this Jak kinase may extend beyond the Jak-STAT pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In hunting for unknown genes on the human X chromosome, we identified a cDNA in Xq28 encoding a transmembrane protein (SEX) of 1871 amino acids. SEX shares significant homology with the extracellular domain of the receptors encoded by the oncogenes MET, RON, and SEA [hepatocyte growth factor (HGF) receptor family]. Further screenings of cDNA libraries identified three additional sequences closely related to SEX: these were named SEP, OCT, and NOV and were located on human chromosomes 3p, 1, and 3q, respectively. The proteins encoded by these genes contain large cytoplasmic domains characterized by a distinctive highly conserved sequence (SEX domain). Northern blot analysis revealed different expression of the SEX family of genes in fetal tissues, with SEX, OCT, and NOV predominantly expressed in brain, and SEP expressed at highest levels in kidney. In situ hybridization analysis revealed that SEX has a distinctive pattern of expression in the developing nervous system of the mouse, where it is found in postmitotic neurons from the first stages of neuronal differentiation (9.5 day postcoitus). The SEX protein (220 kDa) is glycosylated and exposed at the cell surface. Unlike the receptors of the HGF family, p220SEX, a MET-SEX chimera or a constitutively dimerized TPR-SEX does not show tyrosine kinase activity. These data define a gene family (SEX family) involved in the development of neural and epithelial tissues, which encodes putative receptors with unexpected enzymatic or binding properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orally administered antigens induce a state of immunologic hyporesponsiveness termed oral tolerance. Different mechanisms are involved in mediating oral tolerance depending on the dose fed. Low doses of antigen generate cytokine-secreting regulatory cells, whereas high doses induce anergy or deletion. We used mice transgenic for a T-cell receptor (TCR) derived from an encephalitogenic T-cell clone specific for the acetylated N-terminal peptide of myelin basic protein (MBP) Ac-1-11 plus I-Au to test whether a regulatory T cell could be generated from the same precursor cell as that of an encephalitogenic Th1 cell and whether the induction was dose dependent. The MBP TCR transgenic mice primarily have T cells of a precursor phenotype that produce interleukin 2 (IL-2) with little interferon gamma (IFN-gamma), IL-4, or transforming growth factor beta (TGF-beta). We fed transgenic animals a low-dose (1 mg x 5) or high-dose (25 mg x 1) regimen of mouse MBP and without further immunization spleen cells were tested for cytokine production. Low-dose feeding induced prominent secretion of IL-4, IL-10, and TGF-beta, whereas minimal secretion of these cytokines was observed with high-dose feeding. Little or no change was seen in proliferation or IL-2/IFN-gamma secretion in fed animals irrespective of the dose. To demonstrate in vivo functional activity of the cytokine-secreting cells generated by oral antigen, spleen cells from low-dose-fed animals were adoptively transferred into naive (PLJ x SJL)F1 mice that were then immunized for the development of experimental autoimmune encephalomyelitis (EAE). Marked suppression of EAE was observed when T cells were transferred from MBP-fed transgenic animals but not from animals that were not fed. In contrast to oral tolerization, s.c. immunization of transgenic animals with MBP in complete Freund's adjuvant induced IFN-gamma-secreting Th1 cells in vitro and experimental encephalomyelitis in vivo. Despite the large number of cells reactive to MBP in the transgenic animals, EAE was also suppressed by low-dose feeding of MBP prior to immunization. These results demonstrate that MBP-specific T cells can differentiate in vivo into encephalitogenic or regulatory T cells depending upon the context by which they are exposed to antigen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferon tau (IFN tau), originally identified as a pregnancy recognition hormone, is a type I interferon that is related to the various IFN alpha species (IFN alpha s). Ovine IFN tau has antiviral activity similar to that of human IFN alpha A on the Madin-Darby bovine kidney (MDBK) cell line and is equally effective in inhibiting cell proliferation. In this study, IFN tau was found to differ from IFN alpha A in that is was > 30-fold less toxic to MDBK cells at high concentrations. Excess IFN tau did not block the cytotoxicity of IFN alpha A on MDBK cells, suggesting that these two type I IFNs recognize the type I IFN receptor differently on these cells. In direct binding studies, 125I-IFN tau had a Kd of 3.90 x 10(-10) M for receptor on MDBK cells, whereas that of 125I-IFN alpha A was 4.45 x 10(-11) M. Consistent with the higher binding affinity, IFN alpha A was severalfold more effective than IFN tau in competitive binding against 125I-IFN tau to receptor on MDBK cells. Paradoxically, the two IFNs had similar specific antiviral activities on MDBK cells. However, maximal IFN antiviral activity required only fractional occupancy of receptors, whereas toxicity was associated with maximal receptor occupancy. Hence, IFN alpha A, with the higher binding affinity, was more toxic than IFN tau. The IFNs were similar in inducing the specific phosphorylation of the type I receptor-associated tyrosine kinase Tyk2, and the transcription factors Stat1 alpha and Stat2, suggesting that phosphorylation of these signal transduction proteins is not involved in the cellular toxicity associated with type I IFNs. Experiments using synthetic peptides suggest that differences in the interaction at the N terminal of IFN tau and IFN alpha with the type I receptor complex contribute significantly to differences in high-affinity equilibrium binding of these molecules. It is postulated that such a differential recognition of the receptor is responsible for the similar antiviral but different cytotoxic effects of these IFNs. Moreover, these data imply that receptors are "spare'' with respect to certain biological properties, and we speculate that IFNs may induce a concentration-dependent selective association of receptor subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several lines of indirect evidence suggest that plasminogen activation plays a crucial role in degradation of the follicular wall during ovulation. However, single-deficient mice lacking tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), or PA inhibitor type 1(PAI-1) gene function were recently found to have normal reproduction, although mice with a combined deficiency of tPA and uPA were significantly less fertile. To investigate whether the reduced fertility of mice lacking PA gene function is due to a reduced ovulation mechanism, we have determined the ovulation efficiency in 25-day-old mice during gonadotropin-induced ovulation. Our results reveal that ovulation efficiency is normal in mice with a single deficiency of tPA or uPA but reduced by 26% in mice lacking both physiological PAs. This result suggests that plasminogen activation plays a role in ovulatory response, although neither tPA nor uPA individually or in combination is obligatory for ovulation. The loss of an individual PA seems to be functionally complemented by the remaining PA but this compensation does not appear to involve any compensatory up-regulation. Our data imply that a functionally redundant mechanism for plasmin formation operates during gonadotropin-induced ovulation and that PAs together with other proteases generate the proteolytic activity required for follicular wall degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cDNA encoding a signal transduction protein with a Src homology 2 (SH2) domain and a tyrosine phosphorylation site was cloned from a rat lymph node cDNA library. This protein, which we designate Lnk, has a calculated molecular weight of 33,988. When T lymphocytes were activated by antibody-mediated crosslinking of the T-cell receptor and CD4, Lnk became tyrosine phosphorylated. In activated T lymphocytes, phospholipase C gamma 1, phosphatidylinositol 3-kinase, and Grb-2 coimmunoprecipitated with Lnk. Our results suggest that Lnk becomes tyrosine phosphorylated and links the immediate tyrosine phosphorylation signals of the TCR to the distal phosphatidylinositol 3-kinase, phospholipase C gamma 1 and Ras signaling pathways through its multifunctional tyrosine phosphorylation site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although most nuclear hormone receptors are ligand-dependent transcriptional activators, certain members of this superfamily, such as thyroid hormone receptor (TR) and retinoic acid receptor (RAR), are involved in transcriptional repression. The silencing function of these receptors has been localized to the ligand binding domain (LBD). Previously, we demonstrated that overexpression of either the entire LBD or only the N-terminal region of the LBD (amino acids 168-259) is able to inhibit the silencing activity of TR. From this result we postulated the existence of a limiting factor (corepressor) that is necessary for TR silencing activity. To support this hypothesis, we identified amino acids in the N-terminal region of the LBD of TR that are important for the corepressor interaction and for the silencing function of TR. The silencing activity of TR was unaffected by overexpression of the LBD of mutant TR (V174A/D177A), suggesting that valine at position 174 and/or aspartic acid at position 177 are important for corepressor interaction. This mutant receptor protein, V174/D177, also lost the ability to silence target genes, suggesting that these amino acids are important for silencing function. Control experiments indicate that this mutant TR maintains its wild-type hormone binding and transactivation functions. These findings further strengthen the idea that the N-terminal region of the LBD of TR interacts with a putative corepressor protein(s) to achieve silencing of basal gene transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionotropic receptors for gamma-aminobutyric acid (GABA) are important to inhibitory neurotransmission in the mammalian retina, mediating GABAA and GABAC responses. In many species, these responses are blocked by the convulsant picrotoxinin (PTX), although the mechanism of block is not fully understood. In contrast, GABAC responses in the rat retina are extremely resistant to PTX. We hypothesized that this difference could be explained by molecular characterization of the receptors underlying the GABAC response. Here we report the cloning of two rat GABA receptor subunits, designated r rho 1 and r rho 2 after their previously identified human homologues. When coexpressed in Xenopus oocytes, r rho 1/r rho 2 heteromeric receptors mimicked PTX-resistant GABAC responses of the rat retina. PTX resistance is apparently conferred in native heteromeric receptors by r rho 2 subunits since homomeric r rho 1 receptors were sensitive to PTX; r rho 2 subunits alone were unable to form functional homomeric receptors. Site-directed mutagenesis confirmed that a single amino acid residue in the second membrane-spanning region (a methionine in r rho 2 in place of a threonine in r rho 1) is the predominant determinant of PTX resistance in the rat receptor. This study reveals not only the molecular mechanism underlying PTX blockade of GABA receptors but also the heteromeric nature of native receptors in the rat retina that underlie the PTX-resistant GABAC response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mouse CD38 has been implicated in the regulation of both B-cell proliferation and protection of B cells from irradiation-induced apoptosis. CD38 ligation on B cells by CS/2, an anti-mouse CD38 monoclonal antibody, induced proliferation, IgM secretion, and tyrosine phosphorylation of Bruton tyrosine kinase in B cells from wild-type mice. B cells from X chromosome-linked immunodeficient mice did not respond at all to anti-CD38 antibody, although CD38 expression on these B cells was comparable to that on wild-type B cells. We infer from these results that Bruton tyrosine kinase activation is involved in B-cell triggering after cross-linkage of CD38. Analysis of the synergistic effects of various cytokines with CD38 ligation on B-cell activation revealed that interleukin 5 (IL-5) showed the most potent effect on B-cell proliferation, Blimp1 gene expression, and IgM production. These synergistic effects were not seen with B cells from X chromosome-linked immunodeficient mice. Flow cytometry analysis revealed that CD38 ligation increased surface expression of the IL-5-receptor alpha chain on B cells. These data indicate that CD38 ligation increases IL-5 receptor alpha expression and synergizes with IL-5 to enhance Blimp1 expression and IgM synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prolactin (PRL) induces transcriptional activation of milk protein genes, such as the whey acidic protein (WAP), beta-casein, and beta-lactoglobulin genes, through a signaling cascade encompassing the Janus kinase Jak2 and the mammary gland factor (MGF; also called Stat5), which belongs to the family of proteins of signal transducers and activators of transcription (STAT). We isolated and sequenced from mouse mammary tissue Stat5 mRNA and a previously unreported member, which we named Stat5b (Stat5 is renamed to Stat5a). On the protein level Stat5a and Stat5b show a 96% sequence similarity. The 5' and 3' untranslated regions of the two mRNAs are not conserved. Stat5a comprises 793 amino acids and is encoded by a mRNA of 4.2 kb. The Stat5b mRNA has a size of 5.6 kb and encodes a protein of 786 amino acids. Both Stat5a and Stat5b recognized the GAS site (gamma-interferon-activating sequence; TTCNNNGAA) in vitro and mediated PRL-induced transcription in COS cells transfected with a PRL receptor. Stat5b also induced basal transcription in the absence of PRL. Similar levels of Stat5a and Stat5b mRNAs were found in most tissues of virgin and lactating mice, but a differential accumulation of the Stat5 mRNAs was found in muscle and mammary tissue. The two RNAs are present in mammary tissue of immature virgin mice, and their levels increase up to day 16 of pregnancy, followed by a decline during lactation. The increase of Stat5 expression during pregnancy coincides with the activation of the WAP gene.