64 resultados para Vacuolar H -ATPase (V-ATPase)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Werner syndrome (WS) is a premature aging disorder where the affected individuals appear much older than their chronological age. The single gene that is defective in WS encodes a protein (WRN) that has ATPase, helicase and 3′→5′ exonuclease activities. Our laboratory has recently uncovered a physical and functional interaction between WRN and the Ku heterodimer complex that functions in double-strand break repair and V(D)J recombination. Importantly, Ku specifically stimulates the exonuclease activity of WRN. We now report that Ku enables the Werner exonuclease to digest through regions of DNA containing 8-oxoadenine and 8-oxoguanine modifications, lesions that have previously been shown to block the exonuclease activity of WRN alone. These results indicate that Ku significantly alters the exonuclease function of WRN and suggest that the two proteins function concomitantly in a DNA damage processing pathway. In support of this notion we also observed co-localization of WRN and Ku, particularly after DNA damaging treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sphingomyelin- and cholesterol-enriched microdomains can be isolated as detergent-resistant membranes from total cell extracts (total-DRM). It is generally believed that this total-DRM represents microdomains of the plasma membrane. Here we describe the purification and detailed characterization of microdomains from Golgi membranes. These Golgi-derived detergent-insoluble complexes (GICs) have a low buoyant density and are highly enriched in lipids, containing 25% of total Golgi phospholipids including 67% of Golgi-derived sphingomyelin, and 43% of Golgi-derived cholesterol. In contrast to total-DRM, GICs contain only 10 major proteins, present in nearly stoichiometric amounts, including the α- and β-subunits of heterotrimeric G proteins, flotillin-1, caveolin, and subunits of the vacuolar ATPase. Morphological data show a brefeldin A-sensitive and temperature-sensitive localization to the Golgi complex. Strikingly, the stability of GICs does not depend on its membrane environment, because, after addition of brefeldin A to cells, GICs can be isolated from a fused Golgi-endoplasmic reticulum organelle. This indicates that GIC microdomains are not in a dynamic equilibrium with neighboring membrane proteins and lipids. After disruption of the microdomains by cholesterol extraction with cyclodextrin, a subcomplex of several GIC proteins including the B-subunit of the vacuolar ATPase, flotillin-1, caveolin, and p17 could still be isolated by immunoprecipitation. This indicates that several of the identified GIC proteins localize to the same microdomains and that the microdomain scaffold is not required for protein interactions between these GIC proteins but instead might modulate their affinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mediatophore is a protein of approximately 200 kDa able to translocate acetylcholine in response to calcium. It was purified from the presynaptic plasma membranes of the electric organ nerve terminals. Mediatophore is a homooligomer of a 16-kDa subunit, homologous to the proteolipid of V-ATPase. Cells of the N18TG-2 neuronal line are not able to produce quantal acetylcholine release. We show here that transfection of N18TG-2 cells with a plasmid encoding the mediatophore subunit restored calcium-dependent release. The essential feature of such a release was its quantal nature, similar to what is observed in situ in cholinergic synapses from which mediatophore was purified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Escherichia coli DEAD (Asp-Glu-Ala-Asp) box protein DbpA is a putative RNA helicase and established RNA-dependent ATPase and is the only member of the DEAD box protein family for which a specific RNA substrate, bacterial 23S rRNA, has been identified. We have investigated the nature of this specificity in depth and have localized by deletion mutagenesis and PCR a single region of 93 bases (bases 2496-2588) in 23S rRNA that is both necessary and sufficient for complete activation of ATPase activity of DbpA. This target region forms part of the peptidyltransferase center and includes many bases involved in interaction with the 3' terminal adenosines of both A- and P-site tRNAs. Deletion of stem loops within the 93-base segment abolished ATPase activation. Similarly, point mutations that disrupt base pairing within stem structures ablated stimulation of ATPase activity. These data are consistent with roles for DbpA either in establishing and/or maintaining the correct three-dimensional structure of the peptidyltransferase center in 23S rRNA during ribosome assembly or in the peptidyltransferase reaction.