247 resultados para Vaccine subunit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ATP-sensitive potassium (“KATP”) channels are rapidly inhibited by intracellular ATP. This inhibition plays a crucial role in the coupling of electrical activity to energy metabolism in a variety of cells. The KATP channel is formed from four each of a sulfonylurea receptor (SUR) regulatory subunit and an inwardly rectifying potassium (Kir6.2) pore-forming subunit. We used systematic chimeric and point mutagenesis, combined with patch-clamp recording, to investigate the molecular basis of ATP-dependent inhibition gating of mouse pancreatic β cell KATP channels expressed in Xenopus oocytes. We identified distinct functional domains of the presumed cytoplasmic C-terminal segment of the Kir6.2 subunit that play an important role in this inhibition. Our results suggest that one domain is associated with inhibitory ATP binding and another with gate closure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exocyst is a protein complex required for the late stages of secretion in yeast. Unlike the SNAREs (SNAP receptors), important secretory proteins that are broadly distributed on the target membrane, the exocyst is specifically located at sites of vesicle fusion. We have isolated cDNAs encoding the rexo70, rsec5, and rsec15 subunits of the mammalian complex. The amino acid sequences encoded by these genes are between 21% and 24% identical to their yeast homologs. All three genes are broadly expressed and multiple transcripts are observed for rexo70 and rsec15. Characterization of cDNAs encoding the 84-kDa subunit of the mammalian complex revealed a novel protein. mAbs were generated to the mammalian rsec6 subunit of the exocyst complex. rsec6 immunoreactivity is found in a punctate distribution at terminals of PC12 cell processes at or near sites of granule exocytosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many chemoattractants cause chemotaxis of leukocytes by stimulating a structurally distinct class of G protein-coupled receptors. To identify receptor functions required for chemotaxis, we studied chemotaxis in HEK293 cells transfected with receptors for nonchemokine ligands or for interleukin 8 (IL-8), a classical chemokine. In gradients of the appropriate agonist, three nonchemokine Gi-coupled receptors (the D2 dopamine receptor and opioid μ and δ receptors) mediated chemotaxis; the β2-adrenoreceptor and the M3-muscarinic receptor, which couple respectively to Gs and Gq, did not mediate chemotaxis. A mutation deleting 31 C-terminal amino acids from the IL-8 receptor type B quantitatively impaired chemotaxis and agonist-induced receptor internalization, but not inhibition of adenylyl cyclase or stimulation of mitogen-activated protein kinase. To probe the possible relation between receptor internalization and chemotaxis, we used two agonists of the μ-opioid receptor. Morphine and etorphine elicited quantitatively similar chemotaxis, but only etorphine induced receptor internalization. Overexpression of two βγ sequestering proteins (βARK-ct and αt) prevented IL-8 receptor type B-mediated chemotaxis but did not affect inhibition of adenylyl cyclase by IL-8. We conclude that: (i) Nonchemokine Gi-coupled receptors can mediate chemotaxis. (ii) Gi activation is necessary but probably not sufficient for chemotaxis. (iii) Chemotaxis does not require receptor internalization. (iv) Chemotaxis requires the release of free βγ subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast neurotransmission requires that docked synaptic vesicles be located near the presynaptic N-type or P/Q-type calcium channels. Specific protein–protein interactions between a synaptic protein interaction (synprint) site on N-type and P/Q-type channels and the presynaptic SNARE proteins syntaxin, SNAP-25, and synaptotagmin are required for efficient, synchronous neurotransmitter release. Interaction of the synprint site of N-type calcium channels with syntaxin and SNAP-25 has a biphasic calcium dependence with maximal binding at 10–20 μM. We report here that the synprint sites of the BI and rbA isoforms of the α1A subunit of P/Q-type Ca2+ channels have different patterns of interactions with synaptic proteins. The BI isoform of α1A specifically interacts with syntaxin, SNAP-25, and synaptotagmin independent of Ca2+ concentration and binds with high affinity to the C2B domain of synaptotagmin but not the C2A domain. The rbA isoform of α1A interacts specifically with synaptotagmin and SNAP-25 but not with syntaxin. Binding of synaptotagmin to the rbA isoform of α1A is Ca2+-dependent, with maximum affinity at 10–20 μM Ca2+. Although the rbA isoform of α1A binds well to both the C2A and C2B domains of synaptotagmin, only the interaction with the C2A domain is Ca2+-dependent. These differential, Ca2+-dependent interactions of Ca2+ channel synprint sites with SNARE proteins may modulate the efficiency of transmitter release triggered by Ca2+ influx through these channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The voltage-gated Ca2+ channels that effect tonic release of neurotransmitter from hair cells have unusual pharmacological properties: unlike most presynaptic Ca2+ channels, they are sensitive to dihydropyridines and therefore are L-type. To characterize these Ca2+ channels, we investigated the expression of L-type α1 subunits in hair cells of the chicken’s cochlea. In PCRs with five different pairs of degenerate primers, we always obtained α1D products, but only once an α1C product and never an α1S product. A full-length α1D mRNA sequence was assembled from overlapping PCR products; the predicted amino acid sequence of the α1D subunit was about 90% identical to those of the mammalian α1D subunits. In situ hybridization confirmed that the α1D mRNA is present in hair cells. By using a quantitative PCR assay, we determined that the α1D mRNA is 100–500 times more abundant than the α1C mRNA. We conclude that most, if not all, voltage-gated Ca2+ channels in hair cells contain an α1D subunit. Furthermore, we propose that the α1D subunit plays a hitherto undocumented role at tonic synapses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The L-type voltage-gated Ca2+ channels that control tonic release of neurotransmitter from hair cells exhibit unusual electrophysiological properties: a low activation threshold, rapid activation and deactivation, and a lack of Ca2+-dependent inactivation. We have inquired whether these characteristics result from cell-specific splicing of the mRNA for the L-type α1D subunit that predominates in hair cells of the chicken’s cochlea. The α1D subunit in hair cells contains three uncommon exons: one encoding a 26-aa insert in the cytoplasmic loop between repeats I and II, an alternative exon for transmembrane segment IIIS2, and a heretofore undescribed exon specifying a 10-aa insert in the cytoplasmic loop between segments IVS2 and IVS3. We propose that the alternative splicing of the α1D mRNA contributes to the unusual behavior of the hair cell’s voltage-gated Ca2+ channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that CC chemokines induced a sustained increase in monocyte adhesion to intercellular adhesion molecule-1 that was mediated by Mac-1 (αMβ2) but not lymphocyte function–associated antigen-1 (LFA-1; αLβ2). In contrast, staining for an activation epitope revealed a rapid and transient up-regulation of LFA-1 activity by monocyte chemotactic protein-1 (MCP-1) in monocytes and Jurkat CCR2 chemokine receptor transfectants or by stromal-derived factor-1α in Jurkat cells. Differential kinetics for activation of Mac-1 (sustained) and LFA-1 (transient) avidity in response to stromal-derived factor-1α were confirmed by expression of αM or αL in αL-deficient Jurkat cells. Moreover, expression of chimeras containing αL and αM cytoplasmic domain exchanges indicated that α cytoplasmic tails conferred the specific mode of regulation. Coexpressing αM or chimeras in mutant Jurkat cells with a “gain of function” phenotype that results in constitutively active LFA-1 demonstrated that Mac-1 was not constitutively active, whereas constitutive activity was mediated via the αL cytoplasmic tail, implying the presence of distinct signaling pathways for LFA-1 and Mac-1. Transendothelial chemotaxis of monocytes in response to MCP-1 was dependent on LFA-1; however, Mac-1 was involved at MCP-1 concentrations stimulating its avidity, showing differential contributions of β2 integrins. Our data suggest that a specific regulation of β2 integrin avidity by chemokines may be important in leukocyte extravasation and may be triggered by distinct activation pathways transduced via the α subunit cytoplasmic domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine (DA) inhibition of Na+,K+-ATPase in proximal tubule cells is associated with increased endocytosis of its α and β subunits into early and late endosomes via a clathrin vesicle-dependent pathway. In this report we evaluated intracellular signals that could trigger this mechanism, specifically the role of phosphatidylinositol 3-kinase (PI 3-K), the activation of which initiates vesicular trafficking and targeting of proteins to specific cell compartments. DA stimulated PI 3-K activity in a time- and dose-dependent manner, and this effect was markedly blunted by wortmannin and LY 294002. Endocytosis of the Na+,K+-ATPase α subunit in response to DA was also inhibited in dose-dependent manner by wortmannin and LY 294002. Activation of PI 3-K generally occurs by association with tyrosine kinase receptors. However, in this study immunoprecipitation with a phosphotyrosine antibody did not reveal PI 3-K activity. DA-stimulated endocytosis of Na+,K+-ATPase α subunits required protein kinase C, and the ability of DA to stimulate PI 3-K was blocked by specific protein kinase C inhibitors. Activation of PI 3-K is mediated via the D1 receptor subtype and the sequential activation of phospholipase A2, arachidonic acid, and protein kinase C. The results indicate a key role for activation of PI 3-K in the endocytic sequence that leads to internalization of Na+,K+-ATPase α subunits in response to DA, and suggest a mechanism for the participation of protein kinase C in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the fission yeast Schizosaccharomyces pombe, passage from G1 to S-phase requires the execution of the transcriptional factor complex that consists of the Cdc10 and Res1/2 molecules. This complex activates the MluI cell cycle box cis-element contained in genes essential for S-phase onset and progression. The rep2+ gene, isolated as a multicopy suppressor of a temperature-sensitive cdc10 mutant, has been postulated to encode a putative transcriptional activator subunit for the Res2–Cdc10 complex. To identify the rep2+ function and molecularly define its domain organization, we reconstituted the Res2–Cdc10 complex-dependent transcriptional activation in Saccharomyces cerevisiae. Reconstitution experiments, deletion analyses using one and two hybrid systems, and in vivo Res2 coimmunoprecipitation assays show that the Res2–Cdc10 complex itself can recognize but cannot activate MluI cell cycle box without Rep2, and that consistent with its postulated function, Rep2 contains 45-amino acid Res2 binding and 22-amino acid transcriptional activation domains in the middle and C terminus of the molecule, respectively. The functional essentiality of these domains is also demonstrated by their requirement for rescue of the cold-sensitive rep2 deletion mutant of fission yeast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermediate filament protein vimentin is a major phosphoprotein in mammalian fibroblasts, and reversible phosphorylation plays a key role in its dynamic rearrangement. Selective inhibition of type 2A but not type 1 protein phosphatases led to hyperphosphorylation and concomitant disassembly of vimentin, characterized by a collapse into bundles around the nucleus. We have analyzed the potential role of one of the major protein phosphatase 2A (PP2A) regulatory subunits, B55, in vimentin dephosphorylation. In mammalian fibroblasts, B55 protein was distributed ubiquitously throughout the cytoplasm with a fraction associated to vimentin. Specific depletion of B55 in living cells by antisense B55 RNA was accompanied by disassembly and increased phosphorylation of vimentin, as when type 2A phosphatases were inhibited using okadaic acid. The presence of B55 was a prerequisite for PP2A to efficiently dephosphorylate vimentin in vitro or to induce filament reassembly in situ. Both biochemical fractionation and immunofluorescence analysis of detergent-extracted cells revealed that fractions of PP2Ac, PR65, and B55 were tightly associated with vimentin. Furthermore, vimentin-associated PP2A catalytic subunit was displaced in B55-depleted cells. Taken together these data show that, in mammalian fibroblasts, the intermediate filament protein vimentin is dephosphorylated by PP2A, an event targeted by B55.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ERp57 is a lumenal protein of the endoplasmic reticulum (ER) and a member of the protein disulfide isomerase (PDI) family. In contrast to archetypal PDI, ERp57 interacts specifically with newly synthesized glycoproteins. In this study we demonstrate that ERp57 forms discrete complexes with the ER lectins, calnexin and calreticulin. Specific ERp57/calreticulin complexes exist in canine pancreatic microsomes, as demonstrated by SDS-PAGE after cross-linking, and by native electrophoresis in the absence of cross-linking. After in vitro translation and import into microsomes, radiolabeled ERp57 can be cross-linked to endogenous calreticulin and calnexin while radiolabeled PDI cannot. Likewise, radiolabeled calreticulin is cross-linked to endogenous ERp57 but not PDI. Similar results were obtained in Lec23 cells, which lack the glucosidase I necessary to produce glycoprotein substrates capable of binding to calnexin and calreticulin. This observation indicates that ERp57 interacts with both of the ER lectins in the absence of their glycoprotein substrate. This result was confirmed by a specific interaction between in vitro synthesized calreticulin and ERp57 prepared in solution in the absence of other ER components. We conclude that ERp57 forms complexes with both calnexin and calreticulin and propose that it is these complexes that can specifically modulate glycoprotein folding within the ER lumen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorylation of the α-subunit of Na+,K+-ATPase plays an important role in the regulation of this pump. Recent studies suggest that insulin, known to increase solute and fluid reabsorption in mammalian proximal convoluted tubule (PCT), is stimulating Na+,K+-ATPase activity through the tyrosine phosphorylation process. This study was therefore undertaken to evaluate the role of tyrosine phosphorylation of the Na+,K+-ATPase α-subunit in the action of insulin. In rat PCT, insulin and orthovanadate (a tyrosine phosphatase inhibitor) increased tyrosine phosphorylation level of the α-subunit more than twofold. Their effects were not additive, suggesting a common mechanism of action. Insulin-induced tyrosine phosphorylation was prevented by genistein, a tyrosine kinase inhibitor. The site of tyrosine phosphorylation was identified on Tyr-10 by controlled trypsinolysis in rat PCTs and by site-directed mutagenesis in opossum kidney cells transfected with rat α-subunit. The functional relevance of Tyr-10 phosphorylation was assessed by 1) the abolition of insulin-induced stimulation of the ouabain-sensitive 86Rb uptake in opossum kidney cells expressing mutant rat α1-subunits wherein tyrosine was replaced by alanine or glutamine; and 2) the similarity of the time course and dose dependency of the insulin-induced increase in ouabain-sensitive 86Rb uptake and tyrosine phosphorylation. These findings indicate that phosphorylation of the Na+,K+-ATPase α-subunit at Tyr-10 likely participates in the physiological control of sodium reabsorption in PCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the isolation and functional analysis of the rfc3+ gene of Schizosaccharomyces pombe, which encodes the third subunit of replication factor C (RFC3). Because the rfc3+ gene was essential for growth, we isolated temperature-sensitive mutants. One of the mutants, rfc3-1, showed aberrant mitosis with fragmented or unevenly separated chromosomes at the restrictive temperature. In this mutant protein, arginine 216 was replaced by tryptophan. Pulsed-field gel electrophoresis suggested that rfc3-1 cells had defects in DNA replication. rfc3-1 cells were sensitive to hydroxyurea, methanesulfonate (MMS), and gamma and UV irradiation even at the permissive temperature, and the viabilities after these treatments were decreased. Using cells synchronized in early G2 by centrifugal elutriation, we found that the replication checkpoint triggered by hydroxyurea and the DNA damage checkpoint caused by MMS and gamma irradiation were impaired in rfc3-1 cells. Association of Rfc3 and Rad17 in vivo and a significant reduction of the phosphorylated form of Chk1 in rfc3-1 cells after treatments with MMS and gamma or UV irradiation suggested that the checkpoint signal emitted by Rfc3 is linked to the downstream checkpoint machinery via Rad17 and Chk1. From these results, we conclude that rfc3+ is required not only for DNA replication but also for replication and damage checkpoint controls, probably functioning as a checkpoint sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modified nucleoside 1-methyladenosine (m1A) is found at position 58 in the TΨC loop of many eukaryotic tRNAs. The absence of m1A from all tRNAs in Saccharomyces cerevisiae mutants lacking Gcd10p elicits severe defects in processing and stability of initiator methionine tRNA (tRNAiMet). Gcd10p is found in a complex with Gcd14p, which contains conserved motifs for binding S-adenosylmethionine (AdoMet). These facts, plus our demonstration that gcd14Δ cells lacked m1A, strongly suggested that Gcd10p/Gcd14p complex is the yeast tRNA(m1A)methyltransferase [(m1A)MTase]. Supporting this prediction, affinity-purified Gcd10p/Gcd14p complexes used AdoMet as a methyl donor to synthesize m1A in either total tRNA or purified tRNAiMet lacking only this modification. Kinetic analysis of the purified complex revealed KM values for AdoMet or tRNAiMet of 5.0 μM and 2.5 nM, respectively. Mutations in the predicted AdoMet-binding domain destroyed GCD14 function in vivo and (m1A)MTase activity in vitro. Purified Flag-tagged Gcd14p alone had no enzymatic activity and was severely impaired for tRNA-binding compared with the wild-type complex, suggesting that Gcd10p is required for tight binding of the tRNA substrate. Our results provide a demonstration of a two-component tRNA MTase and suggest that binding of AdoMet and tRNA substrates depends on different subunits of the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated that peripheral T cell tolerance toward murine melanoma self-antigens gp100 and TRP-2 can be broken by an autologous oral DNA vaccine containing the murine ubiquitin gene fused to minigenes encoding peptide epitopes gp10025–33 and TRP-2181–188. These epitopes contain dominant anchor residues for MHC class I antigen alleles H-2Db and H-2Kb, respectively. The DNA vaccine was delivered by oral gavage by using an attenuated strain of Salmonella typhimurium as carrier. Tumor-protective immunity was mediated by MHC class I antigen-restricted CD8+ T cells that secreted TH1 cytokine IFN-γ and induced tumor rejection and growth suppression after a lethal challenge with B16G3.26 murine melanoma cells. Importantly, the protective immunity induced by this autologous DNA vaccine against murine melanoma cells was at least equal to that achieved through xenoimmunization with the human gp10025–33 peptide, which differs in its three NH2-terminal amino acid residues from its murine counterpart and was previously reported to be clearly superior to an autologous vaccine in inducing protective immunity. The presence of ubiquitin upstream of the minigene proved to be essential for achieving this tumor-protective immunity, suggesting that effective antigen processing and presentation may make it possible to break peripheral T cell tolerance to a self-antigen. This vaccine design might prove useful for future rational designs of other recombinant DNA vaccines targeting tissue differentiation antigens expressed by tumors.