86 resultados para Three-dimensional Structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantitatively analyzed, using laser scanning confocal microscopy, the three-dimensional structure of individual senile plaques in Alzheimer disease. We carried out the quantitative analysis using statistical methods to gain insights about the processes that govern Aβ peptide deposition. Our results show that plaques are complex porous structures with characteristic pore sizes. We interpret plaque morphology in the context of a new dynamical model based on competing aggregation and disaggregation processes in kinetic steady-state equilibrium with an additional diffusion process allowing Aβ deposits to diffuse over the surface of plaques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional structure of tRNA is organized into two domains—the acceptor-TΨC minihelix with the amino acid attachment site and a second, anticodon-containing, stem–loop domain. Aminoacyl-tRNA synthetases have a structural organization that roughly recapitulates the two-domain organization of tRNAs—an older primary domain that contains the catalytic center and interacts with the minihelix and a secondary, more recent, domain that makes contacts with the anticodon-containing arm. The latter contacts typically are essential for enhancement of the catalytic constant kcat through domain–domain communication. Methanococcus jannaschii tyrosyl-tRNA synthetase is a miniature synthetase with a tiny secondary domain suggestive of an early synthetase evolving from a one-domain to a two-domain structure. Here we demonstrate functional interactions with the anticodon-containing arm of tRNA that involve the miniaturized secondary domain. These interactions appear not to include direct contacts with the anticodon triplet but nonetheless lead to domain–domain communication. Thus, interdomain communication may have been established early in the evolution from one-domain to two-domain structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipids when dispersed in excess water generally form vesicular membrane structures. Cryo-transmission and freeze-fracture electron microscopy are combined here with calorimetry and viscometry to demonstrate the reversible conversion of phosphatidylglycerol aqueous vesicle suspensions to a three-dimensional structure that consists of extended bilayer networks. Thermodynamic analysis indicates that the structural transitions arise from two effects: (i) the enhanced membrane elasticity accompanying the lipid state fluctuations on chain melting and (ii) solvent-associated interactions (including electrostatics) that favor a change in membrane curvature. The material properties of the hydrogels and their reversible formation offer the possibility of future applications, for example in drug delivery, the design of structural switches, or for understanding vesicle fusion or fission processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bcl-2 is the prototypical member of a large family of apoptosis-regulating proteins, consisting of blockers and promoters of cell death. The three-dimensional structure of a Bcl-2 homologue, Bcl-XL, suggests striking similarity to the pore-forming domains of diphtheria toxin and the bacterial colicins, prompting exploration of whether Bcl-2 is capable of forming pores in lipid membranes. Using chloride efflux from KCl-loaded unilamellar lipid vesicles as an assay, purified recombinant Bcl-2 protein exhibited pore-forming activity with properties similar to those of the bacterial toxins, diphtheria toxin, and colicins, i.e., dependence on low pH and acidic lipid membranes. In contrast, a mutant of Bcl-2 lacking the two core hydrophobic α-helices (helices 5 and 6), predicted to be required for membrane insertion and channel formation, produced only nonspecific effects. In planar lipid bilayers, where detection of single channels is possible, Bcl-2 formed discrete ion-conducting, cation-selective channels, whereas the Bcl-2 (Δh5, 6) mutant did not. The most frequent conductance observed (18 ± 2 pS in 0.5 M KCl at pH 7.4) is consistent with a four-helix bundle structure arising from Bcl-2 dimers. However, larger channel conductances (41 ± 2 pS and 90 ± 10 pS) also were detected with progressively lower occurrence, implying the step-wise formation of larger oligomers of Bcl-2 in membranes. These findings thus provide biophysical evidence that Bcl-2 forms channels in lipid membranes, suggesting a novel function for this antiapoptotic protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The snowshoe hare and the Canadian lynx in the boreal forests of North America show 9- to 11-year density cycles. These are generally assumed to be linked to each other because lynx are specialist predators on hares. Based on time series data for hare and lynx, we show that the dominant dimensional structure of the hare series appears to be three whereas that of the lynx is two. The three-dimensional structure of the hare time series is hypothesized to be due to a three-trophic level model in which the hare may be seen as simultaneously regulated from below and above. The plant species in the hare diet appear compensatory to one another, and the predator species may, likewise, be seen as an internally compensatory guild. The lynx time series are, in contrast, consistent with a model of donor control in which their populations are regulated from below by prey availability. Thus our analysis suggests that the classic view of a symmetric hare–lynx interaction is too simplistic. Specifically, we argue that the classic food chain structure is inappropriate: the hare is influenced by many predators other than the lynx, and the lynx is primarily influenced by the snowshoe hare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the heme-copper terminal oxidases of Thermus thermophilus (called ba3 and caa3) are able to catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O) under reducing anaerobic conditions. The rate of NO consumption and N2O production were found to be linearly dependent on enzyme concentration, and activity was abolished by enzyme denaturation. Thus, contrary to the eukaryotic enzyme, both T. thermophilus oxidases display a NO reductase activity (3.0 ± 0.7 mol NO/mol ba3 × min and 32 ± 8 mol NO/mol caa3 × min at [NO] ≈ 50 μM and 20°C) that, though considerably lower than that of bona fide NO reductases (300–4,500 mol NO/mol enzyme × min), is definitely significant. We also show that for ba3 oxidase, NO reduction is associated to oxidation of cytochrome b at a rate compatible with turnover, suggesting a mechanism consistent with the stoichiometry of the overall reaction. We propose that the NO reductase activity of T. thermophilus oxidases may depend on a peculiar CuB+ coordination, which may be revealed by the forthcoming three-dimensional structure. These findings support the hypothesis of a common phylogeny of aerobic respiration and bacterial denitrification, which was proposed on the basis of structural similarities between the Pseudomonas stutzeri NO reductase and the cbb3 terminal oxidases. Our findings represent functional evidence in support of this hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Archaea contain histones that have primary sequences in common with eukaryal nucleosome core histones and a three-dimensional structure that is essentially only the histone fold. Here we report the results of experiments that document that archaeal histones compact DNA in vivo into structures similar to the structure formed by the histone (H3+H4)2 tetramer at the center of the eukaryal nucleosome. After formaldehyde cross-linking in vivo, these archaeal nucleosomes have been isolated from Methanobacterium thermoautotrophicum and Methanothermus fervidus, visualized by electron microscopy on plasmid and genomic DNAs, and shown by immunogold labeling, SDS/PAGE, and immunoblotting to contain archaeal histones, cross-linked into tetramers. Archaeal nucleosomes protect ≈60 bp of DNA and multiples of ≈60 bp from micrococcal nuclease digestion, and immunoprecipitation has demonstrated that most, but not all, M. fervidus genomic DNA sequences are associated in vivo with archaeal histones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C2-α-Mannosyltryptophan was discovered in human RNase 2, an enzyme that occurs in eosinophils and is involved in host defense. It represents a novel way of attaching carbohydrate to a protein in addition to the well-known N- and O-glycosylations. The reaction is specific, as in RNase 2 Trp-7, but never Trp-10, which is modified. In this article, we address which structural features provide the specificity of the reaction. Expression of chimeras of RNase 2 and nonglycosylated RNase 4 and deletion mutants in HEK293 cells identified residues 1–13 to be sufficient for C-mannosylation. Site-directed mutagenesis revealed the sequence Trp-x-x-Trp, in which the first Trp becomes mannosylated, as the specificity determinant. The Trp residue at position +3 can be replaced by Phe, which reduces the efficiency of the reaction threefold. Interpretation of the data in the context of the three-dimensional structure of RNase 2 strongly suggests that the primary, rather than the tertiary, structure forms the determinant. The sequence motif occurs in 336 mammalian proteins currently present in protein databases. Two of these proteins were analyzed protein chemically, which showed partial C-glycosylation of recombinant human interleukin 12. The frequent occurrence of the protein recognition motif suggests that C-glycosides could be part of the structure of more proteins than assumed so far.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spindle pole body (SPB) is the major microtubule-organizing center of budding yeast and is the functional equivalent of the centrosome in higher eukaryotic cells. We used fast-frozen, freeze-substituted cells in conjunction with high-voltage electron tomography to study the fine structure of the SPB and the events of early spindle formation. Individual structures were imaged at 5–10 nm resolution in three dimensions, significantly better than can be achieved by serial section electron microscopy. The SPB is organized in distinct but coupled layers, two of which show ordered two-dimensional packing. The SPB central plaque is anchored in the nuclear envelope with hook-like structures. The minus ends of nuclear microtubules (MTs) are capped and are tethered to the SPB inner plaque, whereas the majority of MT plus ends show a distinct flaring. Unbudded cells containing a single SPB retain 16 MTs, enough to attach to each of the expected 16 chromosomes. Their median length is ∼150 nm. MTs growing from duplicated but not separated SPBs have a median length of ∼130 nm and interdigitate over the bridge that connects the SPBs. As a bipolar spindle is formed, the median MT length increases to ∼300 nm and then decreases to ∼30 nm in late anaphase. Three-dimensional models confirm that there is no conventional metaphase and that anaphase A occurs. These studies complement and extend what is known about the three-dimensional structure of the yeast mitotic spindle and further our understanding of the organization of the SPB in intact cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many pathogen recognition genes, such as plant R-genes, undergo rapid adaptive evolution, providing evidence that these genes play a critical role in plant-pathogen coevolution. Surprisingly, whether rapid adaptive evolution also occurs in genes encoding other kinds of plant defense proteins is unknown. Unlike recognition proteins, plant chitinases attack pathogens directly, conferring disease resistance by degrading chitin, a component of fungal cell walls. Here, we show that nonsynonymous substitution rates in plant class I chitinase often exceed synonymous rates in the plant genus Arabis (Cruciferae) and in other dicots, indicating a succession of adaptively driven amino acid replacements. We identify individual residues that are likely subject to positive selection by using codon substitution models and determine the location of these residues on the three-dimensional structure of class I chitinase. In contrast to primate lysozymes and plant class III chitinases, structural and functional relatives of class I chitinase, the adaptive replacements of class I chitinase occur disproportionately in the active site cleft. This highly unusual pattern of replacements suggests that fungi directly defend against chitinolytic activity through enzymatic inhibition or other forms of chemical resistance and identifies target residues for manipulating chitinolytic activity. These data also provide empirical evidence that plant defense proteins not involved in pathogen recognition also evolve in a manner consistent with rapid coevolutionary interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duocarmycin A (Duo) normally alkylates adenine N3 at the 3′ end of A+T-rich sequences in DNA. The efficient adenine alkylation by Duo is achieved by its monomeric binding to the DNA minor groove. The addition of another minor groove binder, distamycin A (Dist), dramatically modulates the site of DNA alkylation by Duo, and the alkylation switches preferentially to G residues in G+C-rich sequences. HPLC product analysis using oligonucleotides revealed a highly efficient G–N3 alkylation via the cooperative binding of a heterodimer between Duo and Dist to the minor groove. The three-dimensional structure of the ternary alkylated complex of Duo/Dist/d(CAGGTGGT)·d(ACCACCTG) has been determined by nuclear Overhauser effect (NOE)-restrained refinement using 750 MHz two-dimensional NOE spectroscopy data. The refined NMR structure fully explains the sequence requirement of such modulated alkylations. This is the first demonstration of Duo DNA alkylation through cooperative binding with another structurally different natural product, and it suggests a promising new way to alter or modify the DNA alkylation selectivity in a predictable manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the three-dimensional structure of proteins by a computer program that finds regions of sequence that contain module boundaries, defining a module as a segment of polypeptide chain bounded in space by a specific given distance. The program defines a set of “linker regions” that have the property that if an intron were to be placed into each linker region, the protein would be dissected into a set of modules all less than the specified diameter. We test a set of 32 proteins, all of ancient origin, and a corresponding set of 570 intron positions, to ask if there is a statistically significant excess of intron positions within the linker regions. For 28-Å modules, a standard size used historically, we find such an excess, with P < 0.003. This correlation is neither due to a compositional or sequence bias in the linker regions nor to a surface bias in intron positions. Furthermore, a subset of 20 introns, which can be putatively identified as old, lies even more explicitly within the linker regions, with P < 0.0003. Thus, there is a strong correlation between intron positions and three-dimensional structural elements of ancient proteins as expected by the introns-early approach. We then study a range of module diameters and show that, as the diameter varies, significant peaks of correlation appear for module diameters centered at 21.7, 27.6, and 32.9 Å. These preferred module diameters roughly correspond to predicted exon sizes of 15, 22, and 30 residues. Thus, there are significant correlations between introns, modules, and a quantized pattern of the lengths of polypeptide chains, which is the prediction of the “Exon Theory of Genes.”

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cells recognize antigen by formation of a trimolecular complex in which the T-cell receptor (TCR) recognizes a specific peptide antigen within the groove of a major histocompatibility complex (MHC) molecule. It has generally been assumed that T-cell recognition of two distinct MHC–antigen complexes is due to similarities in the three-dimensional structure of the complexes. Here we report results of experiments examining the crossreactivity of TCRs recognizing the myelin basic protein peptide MBPp85–99 and several of its analogs in the context of MHC. We demonstrate that single conservative amino acid substitutions of the antigenic peptide at the predominant TCR contact residues at positions 91 and 93 totally abrogate reactivity of specific T-cell clones. Yet, when a conservative substitution is made at position 91 concomitant with a substitution at position 93, the T-cell clones regain reactivity equivalent with that of the original stimulating peptide. Thus, the exact nature of the amino acid side chains engaging one TCR functional pocket may change the apparent selectivity of the other predominant TCR functional pocket, thus suggesting a remarkable degree of receptor plasticity. This ability of the TCR–MHC–peptide complex to undergo conformational changes provides a conceptual framework for reconciling the apparent paradox of the extreme selectivity of the TCR and its remarkable crossreactivity with different MHC–peptide complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vision extracts useful information from images. Reconstructing the three-dimensional structure of our environment and recognizing the objects that populate it are among the most important functions of our visual system. Computer vision researchers study the computational principles of vision and aim at designing algorithms that reproduce these functions. Vision is difficult: the same scene may give rise to very different images depending on illumination and viewpoint. Typically, an astronomical number of hypotheses exist that in principle have to be analyzed to infer a correct scene description. Moreover, image information might be extracted at different levels of spatial and logical resolution dependent on the image processing task. Knowledge of the world allows the visual system to limit the amount of ambiguity and to greatly simplify visual computations. We discuss how simple properties of the world are captured by the Gestalt rules of grouping, how the visual system may learn and organize models of objects for recognition, and how one may control the complexity of the description that the visual system computes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is not known whether the mammalian mechanism of coagulation initiation is conserved in fish. Identification of factor VII is critical in providing evidence for such a mechanism. A cDNA was cloned from a zebrafish (teleost) library that predicted a protein with sequence similarity to human factor VII. Factor VII was shown to be present in zebrafish blood and liver by Western blot analysis and immunohistochemistry. Immunodepletion of factor VII from zebrafish plasma selectively inhibited thromboplastin-triggered thrombin generation. Heterologous expression of zebrafish factor VII demonstrated a secreted protein (50 kDa) that reconstituted thromboplastin-triggered thrombin generation in immunodepleted zebrafish plasma. These results suggest conservation of the extrinsic coagulation pathway between zebrafish and humans and add credence to the zebrafish as a model for mammalian hemostasis. The structure of zebrafish factor VIIa predicted by homology modeling was consistent with the overall three-dimensional structure of human factor VIIa. However, amino acid disparities were found in the epidermal growth factor-2/serine protease regions that are present in the human tissue factor–factor VIIa contact surface, suggesting a structural basis for the species specificity of this interaction. In addition, zebrafish factor VII demonstrates that the Gla-EGF-EGF-SP domain structure, which is common to coagulation factors VII, IX, X, and protein C, was present before the radiation of the teleosts from the tetrapods. Identification of zebrafish factor VII significantly narrows the evolutionary window for development of the vertebrate coagulation cascade and provides insight into the structural basis for species specificity in the tissue factor–factor VIIa interaction.