183 resultados para The Folding Wife
Resumo:
Phosphorylation of the regulatory (R) domain initiates cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel activity. To discover how the function of this domain is determined by its structure, we produced an R domain protein (R8) that spanned residues 708–831 of CFTR. Phosphorylated, but not unphosphorylated, R8 stimulated activity of CFTR channels lacking this domain, indicating that R8 is functional. Unexpectedly, this functional R8 was predominantly random coil, as revealed by CD and limited proteolysis. The CD spectra of both phosphorylated and nonphosphorylated R8 were similar in aqueous buffer. The folding agent trimethylamine N-oxide induced only a small increase in the helical content of nonphosphorylated R8 and even less change in the helical content of phosphorylated R8. These data, indicating that the R domain is predominantly random coil, may explain the seemingly complex way in which phosphorylation regulates CFTR channel activity.
Resumo:
Dominant negative inhibition is most commonly seen when a mutant subunit of a multisubunit protein is coexpressed with the wild-type protein so that assembly of a functional oligomer is impaired. By analogy, it should be possible to interfere with the functional assembly of a monomeric enzyme by interfering with the folding pathway. Experiments in vitro by others suggested that fragments of a monomeric enzyme might be exploited for this purpose. We report here dominant negative inhibition of bacterial cell growth by expression of fragments of a tRNA synthetase. Inhibition is fragment-specific, as not all fragments cause inhibition. An inhibitory fragment characterized in more detail forms a specific complex with the intact enzyme in vivo, leading to enzyme inactivation. This fragment also associated stoichiometrically with the full-length enzyme in vitro after denaturation and refolding, and the resulting complex was catalytically inactive. Inhibition therefore appears to arise from an interruption in the folding pathway of the wild-type enzyme, thus suggesting a new strategy to design dominant negative inhibitors of monomeric enzymes.
Resumo:
We measured the folding and unfolding kinetics of mutants for a simple protein folding reaction to characterize the structure of the transition state. Fluorescently labeled S-peptide analogues combine with S-protein to form ribonuclease S analogues: initially, S-peptide is disordered whereas S-protein is folded. The fluorescent probe provides a convenient spectroscopic probe for the reaction. The association rate constant, kon, and the dissociation rate constant, koff, were both determined for two sets of mutants. The dissociation rate constant is measured by adding an excess of unlabeled S-peptide analogue to a labeled complex (RNaseS*). This strategy allows kon and koff to be measured under identical conditions so that microscopic reversibility applies and the transition state is the same for unfolding and refolding. The first set of mutants tests the role of the α-helix in the transition state. Solvent-exposed residues Ala-6 and Gln-11 in the α-helix of native RNaseS were replaced by the helix destabilizing residues glycine or proline. A plot of log kon vs. log Kd for this series of mutants is linear over a very wide range, with a slope of −0.3, indicating that almost all of the molecules fold via a transition state involving the helix. A second set of mutants tests the role of side chains in the transition state. Three side chains were investigated: Phe-8, His-12, and Met-13, which are known to be important for binding S-peptide to S-protein and which also contribute strongly to the stability of RNaseS*. Only the side chain of Phe-8 contributes significantly, however, to the stability of the transition state. The results provide a remarkably clear description of a folding transition state.
Resumo:
Single-molecule force spectroscopy reveals unfolding of domains in titin on stretching. We provide a theoretical framework for these experiments by computing the phase diagrams for force-induced unfolding of single-domain proteins using lattice models. The results show that two-state folders (at zero force) unravel cooperatively, whereas stretching of non-two-state folders occurs through intermediates. The stretching rates of individual molecules show great variations reflecting the heterogeneity of force-induced unfolding pathways. The approach to the stretched state occurs in a stepwise “quantized” manner. Unfolding dynamics and forces required to stretch proteins depend sensitively on topology. The unfolding rates increase exponentially with force f till an optimum value, which is determined by the barrier to unfolding when f = 0. A mapping of these results to proteins shows qualitative agreement with force-induced unfolding of Ig-like domains in titin. We show that single-molecule force spectroscopy can be used to map the folding free energy landscape of proteins in the absence of denaturants.
How does a β-hairpin fold/unfold? Competition between topology and heterogeneity in a solvable model
Resumo:
We study the competition between topological effects and sequence inhomogeneities in determining the thermodynamics and the un/folding kinetics of a β-hairpin. Our work utilizes a new exactly solvable model that allows for arbitrary configurations of native contacts. In general, the competition between heterogeneity and topology results in a crossover of the dominant transition state. Interestingly, near this crossover, the single reaction coordinate picture can be seriously misleading. Our results also suggest that inferring the folding pathway from unfolding simulations is not always justified.
Resumo:
A structural motif, the tryptophan zipper (trpzip), greatly stabilizes the β-hairpin conformation in short peptides. Peptides (12 or 16 aa in length) with four different turn sequences are monomeric and fold cooperatively in water, as has been observed previously for some hairpin peptides. However, the folding free energies of the trpzips exceed substantially those of all previously reported β-hairpins and even those of some larger designed proteins. NMR structures of three of the trpzip peptides reveal exceptionally well-defined β-hairpin conformations stabilized by cross-strand pairs of indole rings. The trpzips are the smallest peptides to adopt an unique tertiary fold without requiring metal binding, unusual amino acids, or disulfide crosslinks.
Resumo:
The assembly of polymer chains in solution is a powerful method that is leading to the preparation of interesting and unique macromolecular-based synthetic nanostructures. Specific control over the intramolecular and intermolecular physical interactions dictates either the folding of single chains or the aggregation and ordering of multiple chains. This control is provided through the selective placement of functional groups along the polymer backbone and the relative strengths of their attractive and repulsive interactions.
Resumo:
The folding of the extracellular serine protease, α-lytic protease (αLP; EC 3.4.21.12) reveals a novel mechanism for stability that appears to lead to a longer functional lifetime for the protease. For αLP, stability is based not on thermodynamics, but on kinetics. Whereas this has required the coevolution of a pro region to facilitate folding, the result has been the optimization of native-state properties independent of their consequences on thermodynamic stability. Structural and mutational data lead to a model for catalysis of folding in which the pro region binds to a conserved β-hairpin in the αLP C-terminal domain, stabilizing the folding transition state and the native state. The pro region is then proteolytically degraded, leaving the active αLP trapped in a metastable conformation. This metastability appears to be a consequence of pressure to evolve properties of the native state, including a large, highly cooperative barrier to unfolding, and extreme rigidity, that reduce susceptibility to proteolytic degradation. In a test of survival under highly proteolytic conditions, homologous mammalian proteases that have not evolved kinetic stability are much more rapidly degraded than αLP. Kinetic stability as a means to longevity is likely to be a mechanism conserved among the majority of extracellular bacterial pro-proteases and may emerge as a general strategy for intracellular eukaryotic proteases subject to harsh conditions as well.
Resumo:
Recently, we established that satellite III (TGGAA)n tandem repeats, which occur at the centromeres of human chromosomes, pair with themselves to form an unusual "self-complementary" antiparallel duplex containing (GGA)2 motifs in which two unpaired guanines from opposite strands intercalate between sheared G.A base pairs. In separate studies, we have also established that the GCA triplet does not form bimolecular (GCA)2 motifs but instead promotes the formation of hairpins containing a GCA-turn motif in which the loop contains a single cytidine closed by a sheared G.A pair. Since TGCAA is the most frequent variant of TGGAA found in satellite III repeats, we reasoned that the potential of this variant to form GCA-turn miniloop fold-back structures might be an important factor in modulating the local structure in natural (TGGAA)n repeats. We report here the NMR-derived solution structure of the heptadecadeoxynucleotide (G)TGGAATGCAATGGAA(C) in which a central TGCAA pentamer is flanked by two TGGAA pentamers. This 17-mer forms a rather unusual and very stable hairpin structure containing eight base pairs in the stem, only four of which are Watson-Crick pairs, and a loop consisting of a single cytidine residue. The stem contains a (GGA)2 motif with intercalative 14G/4G stacking between two sheared G.A base pairs; the loop end of the stem consists of a sheared 8G.10A closing pair with the cytosine base of the 9C loop stacked on 8G. The remarkable stability of this unusual hairpin structure (Tm = 63 degrees C) suggests that it probably plays an important role in modulating the folding of satellite III (TGGAA)n repeats at the centromere.
Resumo:
Fibronectin type III modules contain approximately 90 residues and are an extremely common building block of animal proteins. Despite containing a complex all-beta-sheet topology and eight prolines, the refolding of the 10th type III module of human fibronectin has been found to be very rapid, with native core packing, amide hydrogen bonding, and backbone conformation all recovered within 1 s at 5 degrees C. These observations indicate that this domain can overcome many structural characteristics often thought to slow the folding process.
Resumo:
A synthetic strand of RNA has been designed so that it can adopt two different topological states (a circle and a trefoil knot) when ligated into a cyclic molecule. The RNA knot and circle have been characterized by their behavior in gel electrophoresis and sedimentation experiments. This system allows one to assay for the existence of an RNA topoisomerase, because the two RNA molecules can be inter-converted only by a strand passage event. We find that the interconversion of these two species can be catalyzed by Escherichia coli DNA topoisomerase III, indicating that this enzyme can act as an RNA topoisomerase. The conversion of circles to knots is accompanied by a small amount of RNA catenane generation. These findings suggest that strand passage must be considered a potential component of the folding and modification of RNA structures.
Resumo:
The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.
Resumo:
We have examined the positive influence of human constant regions on the folding and bacterial expression of active soluble mouse immunoglobulin variable domains derived from a number of catalytic antibodies. Expression yields of eight hybridoma- and myeloma-derived chimeric Fab fragments are compared in both shake flasks and high density fermentations. In addition the usefulness of this system for the generation of in vivo expression libraries is examined by constructing and expressing combinations of heavy and light chain variable regions that were not selected as a pair during an immune response. A mutagenesis study of one of the recombinant catalytic Fab fragments reveals that single amino acid substitutions can have dramatic effects on the expression yield. This system should be generally applicable to the production of Fab fragments of catalytic and other hybridoma-derived antibodies for crystallographic and structure-function studies.
Resumo:
When expressed as part of a glutathione S-transferase fusion protein the NH2-terminal domain of the lymphocyte cell adhesion molecule CD2 is shown to adopt two different folds. The immunoglobulin superfamily structure of the major (85%) monomeric component has previously been determined by both x-ray crystallography and NMR spectroscopy. We now describe the structure of a second, dimeric, form present in about 15% of recombinant CD2 molecules. After denaturation and refolding in the absence of the fusion partner, dimeric CD2 is converted to monomer, illustrating that the dimeric form represents a metastable folded state. The crystal structure of this dimeric form, refined to 2.0-A resolution, reveals two domains with overall similarity to the IgSF fold found in the monomer. However, in the dimer each domain is formed by the intercalation of two polypeptide chains. Hence each domain represents a distinct folding unit that can assemble in two different ways. In the dimer the two domains fold around a hydrophilic interface believed to mimic the cell adhesion interaction at the cell surface, and the formation of dimer can be regulated by mutating single residues at this interface. This unusual misfolded form of the protein, which appears to result from inter- rather than intramolecular interactions being favored by an intermediate structure formed during the folding process, illustrates that evolution of protein oligomers is possible from the sequence for a single protein domain.
Resumo:
Secretion of IpaB, IpaC, and IpaD proteins of Shigella flexneri, essential for the invasion of epithelial cells, requires a number of proteins encoded by the spa and mxi loci on the large plasmid. Introduction of dsbA::Tn5 into S.flexneri from Escherichia coli K-12 reduced invasiveness, which resulted from a decrease in the capacity to release IpaB, IpaC, and IpaD proteins into the external medium. Examination of the surface-presented Ipa proteins of the dsbA mutant, however, revealed Ipa proteins at levels similar to those on wild-type cells. Since the defective phenotype was similar to that of the spa32 mutant of S. flexneri and the Spa32 sequence possessed two Cys residues, the effect of dsbA mutation of the folding structure of Spa32 under reducing conditions and on the surface expression of Spa32 was investigated. The results indicated that Spa32 was a disulfide-containing protein whose correctly folded structure was required for its presentation on the outer membrane. Indeed, replacing either one of the two Cys residues in Spa32 with Ser by site-directed mutagenesis reduced its capacity to release Ipa proteins into the external medium and led to the accumulation of Spa32 protein in the periplasm. These results indicated that the DsbA protein performs an essential function during the invasion of mammalian cells, by facilitating transport of the Spa32 protein across the outer membrane.