152 resultados para Targeted Deletion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rd7 mouse, an animal model for hereditary retinal degeneration, has some characteristics similar to human flecked retinal disorders. Here we report the identification of a deletion in a photoreceptor-specific nuclear receptor (mPNR) mRNA that is responsible for hereditary retinal dysplasia and degeneration in the rd7 mouse. mPNR was isolated from a pool of photoreceptor-specific cDNAs originally created by subtractive hybridization of mRNAs from normal and photoreceptorless rd mouse retinas. Localization of the gene corresponding to mPNR to mouse Chr 9 near the rd7 locus made it a candidate for the site of the rd7 mutation. Northern analysis of total RNA isolated from rd7 mouse retinas revealed no detectable signal after hybridization with the mPNR cDNA probe. However, with reverse transcription–PCR, we were able to amplify different fragments of mPNR from rd7 retinal RNA and to sequence them directly. We found a 380-nt deletion in the coding region of the rd7 mPNR message that creates a frame shift and produces a premature stop codon. This deletion accounts for more than 32% of the normal protein and eliminates a portion of the DNA-binding domain. In addition, it may result in the rapid degradation of the rd7 mPNR message by the nonsense-mediated decay pathway, preventing the synthesis of the corresponding protein. Our findings demonstrate that mPNR expression is critical for the normal development and function of the photoreceptor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the mechanism of action responsible for the in vivo antitumor activity of a phosphorothioate antisense inhibitor targeted against human C-raf kinase (ISIS 5132, also known as CGP69846A), a series of mismatched phosphorothioate analogs of ISIS 5132 or CGP69846A were synthesized and characterized with respect to hybridization affinity, inhibitory effects on C-raf gene expression in vitro, and antitumor activity in vivo. Incorporation of a single mismatch into the sequence of ISIS 5132 or CGP69846A resulted in reduced hybridization affinity toward C-raf RNA sequences and reduced inhibitory activity against C-raf expression in vitro and tumor growth in vivo. Moreover, incorporation of additional mismatches resulted in further loss of in vitro and in vivo activity in a manner that correlated well with a hybridization-based (i.e., antisense) mechanism of action. These results provide important experimental evidence supporting an antisense mechanism of action underlying the in vivo antitumor activity displayed by ISIS 5132 or CGP69846A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) and carbon monoxide (CO) seem to be neurotransmitters in the brain. The colocalization of their respective biosynthetic enzymes, neuronal NO synthase (nNOS) and heme oxygenase-2 (HO2), in enteric neurons and altered intestinal function in mice with genomic deletion of the enzymes (nNOSΔ/Δ and HO2Δ/Δ) suggest neurotransmitter roles for NO and CO in the enteric nervous system. We now establish that NO and CO are both neurotransmitters that interact as cotransmitters. Small intestinal smooth muscle cells from nNOSΔ/Δ and HO2Δ/Δ mice are depolarized, with apparent additive effects in the double knockouts (HO2Δ/Δ/nNOSΔ/Δ). Muscle relaxation and inhibitory neurotransmission are reduced in the mutant mice. In HO2Δ/Δ preparations, responses to electrical field stimulation are nearly abolished despite persistent nNOS expression, whereas exogenous CO restores normal responses, indicating that the NO system does not function in the absence of CO generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atrial natriuretic peptide (ANP) and nitric oxide (NO) are key regulators of ion and water transport in the kidney. Here, we report that these cGMP-elevating hormones stimulate Ca2+ reabsorption via a novel mechanism specifically involving type II cGMP-dependent protein kinase (cGK II). ANP and the NO donor, sodium nitroprusside (SNP), markedly increased Ca2+ uptake in freshly immunodissected rabbit connecting tubules (CNT) and cortical collecting ducts (CCD). Although readily increasing cGMP, ANP and SNP did not affect Ca2+ and Na+ reabsorption in primary cultures of these segments. Immunoblot analysis demonstrated that cGK II, and not cGK I, was present in freshly isolated CNT and CCD but underwent a complete down-regulation during the primary cell culture. However, upon adenoviral reexpression of cGK II in primary cultures, ANP, SNP, and 8-Br-cGMP readily increased Ca2+ reabsorption. In contrast, no cGMP-dependent effect on electrogenic Na+ transport was observed. The membrane localization of cGK II proved to be crucial for its action, because a nonmyristoylated cGK II mutant that was shown to be localized in the cytosol failed to mediate ANP-stimulated Ca2+ transport. The Ca2+-regulatory function of cGK II appeared isotype-specific because no cGMP-mediated increase in Ca2+ transport was observed after expression of the cytosolic cGK Iβ or a membrane-bound cGK II/Iβ chimer. These results demonstrate that ANP- and NO-stimulated Ca2+ reabsorption requires membrane-targeted cGK II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nested chromosomal deletions are powerful genetic tools. They are particularly suited for identifying essential genes in development either directly or by screening induced mutations against a deletion. To apply this approach to the functional analysis of mouse chromosome 2, a strategy for the rapid generation of nested deletions with Cre recombinase was developed and tested. A loxP site was targeted to the Notch1 gene on chromosome 2. A targeted line was cotransfected with a second loxP site and a plasmid for transient expression of Cre. Independent random integrations of the second loxP site onto the targeted chromosome in direct repeat orientation created multiple nested deletions. By virtue of targeting in an F1 hybrid embryonic stem cell line, F1(129S1×Cast/Ei), the deletions could be verified and rapidly mapped. Ten deletions fell into seven size classes, with the largest extending six or seven centiMorgans. The cytology of the deletion chromosomes were determined by fluorescent in situ hybridization. Eight deletions were cytologically normal, but the two largest deletions had additional rearrangements. Three deletions, including the largest unrearranged deletion, have been transmitted through the germ line. Several endpoints also have been cloned by plasmid rescue. These experiments illustrate the means to rapidly create and map deletions anywhere in the mouse genome. They also demonstrate an improved method for generating nested deletions in embryonic stem cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian metamorphosis is marked by dramatic, thyroid hormone (TH)-induced changes involving gene regulation by TH receptor (TR). It has been postulated that TR-mediated gene regulation involves chromatin remodeling. In the absence of ligand, TR can repress gene expression by recruiting a histone deacetylase complex, whereas liganded TR recruits a histone acetylase complex for gene activation. Earlier studies have led us to propose a dual function model for TR during development. In premetamorphic tadpoles, unliganded TR represses transcription involving histone deacetylation. During metamorphosis, endogenous TH allows TR to activate gene expression through histone acetylation. Here using chromatin immunoprecipitation assay, we directly demonstrate TR binding to TH response genes constitutively in vivo in premetamorphic tadpoles. We further show that TH treatment leads to histone deacetylase release from TH response gene promoters. Interestingly, in whole animals, changes in histone acetylation show little correlation with the expression of TH response genes. On the other hand, in the intestine and tail, where TH response genes are known to be up-regulated more dramatically by TH than in most other organs, we demonstrate that TH treatment induces gene activation and histone H4 acetylation. These data argue for a role of histone acetylation in transcriptional regulation by TRs during amphibian development in some tissues, whereas in others changes in histone acetylation levels may play no or only a minor role, supporting the existence of important alternative mechanisms in gene regulation by TR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with mutations in the thyroid hormone receptor β (TRβ) gene manifest resistance to thyroid hormone (RTH), resulting in a constellation of variable phenotypic abnormalities. To understand the molecular basis underlying the action of mutant TRβ in vivo, we generated mice with a targeted mutation in the TRβ gene (TRβPV; PV, mutant thyroid hormone receptor kindred PV) by using homologous recombination and the Cre/loxP system. Mice expressing a single PVallele showed the typical abnormalities of thyroid function found in heterozygous humans with RTH. Homozygous PV mice exhibit severe dysfunction of the pituitary–thyroid axis, impaired weight gains, and abnormal bone development. This phenotype is distinct from that seen in mice with a null mutation in the TRβ gene. Importantly, we identified abnormal expression patterns of several genes in tissues of TRβPV mice, demonstrating the interference of the mutant TR with the gene regulatory functions of the wild-type TR in vivo. These results show that the actions of mutant and wild-type TRβ in vivo are distinct. This model allows further study of the molecular action of mutant TR in vivo, which could lead to better treatment for RTH patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the MLL genomic translocation breakpoint in acute myeloid leukemia of infant twins. Southern blot analysis in both cases showed two identical MLL gene rearrangements indicating chromosomal translocation. The rearrangements were detectable in the second twin before signs of clinical disease and the intensity relative to the normal fragment indicated that the translocation was not constitutional. Fluorescence in situ hybridization with an MLL-specific probe and karyotype analyses suggested t(11;22)(q23;q11.2) disrupting MLL. Known 5′ sequence from MLL but unknown 3′ sequence from chromosome band 22q11.2 formed the breakpoint junction on the der(11) chromosome. We used panhandle variant PCR to clone the translocation breakpoint. By ligating a single-stranded oligonucleotide that was homologous to known 5′ MLL genomic sequence to the 5′ ends of BamHI-digested DNA through a bridging oligonucleotide, we formed the stem–loop template for panhandle variant PCR which yielded products of 3.9 kb. The MLL genomic breakpoint was in intron 7. The sequence of the partner DNA from band 22q11.2 was identical to the hCDCrel (human cell division cycle related) gene that maps to the region commonly deleted in DiGeorge and velocardiofacial syndromes. Both MLL and hCDCrel contained homologous CT, TTTGTG, and GAA sequences within a few base pairs of their respective breakpoints, which may have been important in uniting these two genes by translocation. Reverse transcriptase-PCR amplified an in-frame fusion of MLL exon 7 to hCDCrel exon 3, indicating that an MLL-hCDCrel chimeric mRNA had been transcribed. Panhandle variant PCR is a powerful strategy for cloning translocation breakpoints where the partner gene is undetermined. This application of the method identified a region of chromosome band 22q11.2 involved in both leukemia and a constitutional disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac myocytes have been shown to express constitutively endothelial nitric oxide synthase (eNOS) (nitric oxide synthase 3), the activation of which has been implicated in the regulation of myocyte L-type voltage-sensitive calcium channel current (ICa-L) and myocyte contractile responsiveness to parasympathetic nervous system signaling, although this implication remains controversial. Therefore, we examined the effect of the muscarinic cholinergic agonist carbachol (CCh) on ICa-L and contractile amplitude in isoproterenol (ISO)-prestimulated ventricular myocytes isolated from adult mice, designated eNOSnull mice, with targeted disruption of the eNOS gene. Although both eNOSnull and wild-type (WT) ventricular myocytes exhibited similar increases in ICa-L in response to ISO, there was no measurable suppression of ICa-L by CCh in cells from eNOSnull mice, in contrast to cells from WT mice. These results were reflected in the absence of an effect of CCh on the positive inotropic effect of ISO in eNOSnull myocytes. Also, unlike myocytes from WT animals, eNOSnull myocytes failed to exhibit an increase in cGMP content in response to CCh. Nevertheless, the pharmacologic nitric oxide donors 3-morpholino-sydnonimine and S-nitroso-acetyl-cystein increased cGMP generation and suppressed ISO-augmented ICa-L in eNOSnull cells, suggesting that the signal transduction pathway(s) downstream of eNOS remained intact. Of importance, activation of the acetylcholine-activated K+ channel by CCh was unaffected in atrial and ventricular eNOSnull myocytes. These results confirm the obligatory role of eNOS in coupling muscarinic receptor activation to cGMP-dependent control of ICa-L in cardiac myocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Campomelic dysplasia (CD) is a rare, neonatal human chondrodysplasia characterized by bowing of the long bones and often associated with male-to-female sex-reversal. Patients present with either heterozygous mutations in the SOX9 gene or chromosome rearrangements mapping at least 50 kb upstream of SOX9. Whereas mutations in SOX9 ORF cause haploinsufficiency, the effects of translocations 5′ to SOX9 are unclear. To test whether these rearrangements also cause haploinsufficiency by altering spatial and temporal expression of SOX9, we generated mice transgenic for human SOX9-lacZ yeast artificial chromosomes containing variable amounts of DNA sequences upstream of SOX9. We show that elements necessary for SOX9 expression during skeletal development are highly conserved between mouse and human and reveal that a rearrangement upstream of SOX9, similar to those observed in CD patients, leads to a substantial reduction of SOX9 expression, particularly in chondrogenic tissues. These data demonstrate that important regulatory elements are scattered over a large region upstream of SOX9 and explain how particular aspects of the CD phenotype are caused by chromosomal rearrangements 5′ to SOX9.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in regulatory regions of developmental control genes have been implicated in the divergence of axial morphologies. To find potentially significant changes in cis-regulatory regions, we compared nucleotide sequences and activities of mammalian Hoxc8 early enhancers. The nucleotide sequence of the early enhancer region is extremely conserved among mammalian clades, with five previously described cis-acting elements, A–E, being invariant. However, a 4-bp deletion within element C of the Hoxc8 early enhancer sequence is observed in baleen whales. When assayed in transgenic mouse embryos, a baleen whale enhancer (unlike other mammalian enhancers) directs expression of the reporter gene to more posterior regions of the neural tube but fails to direct expression to posterior mesoderm. We suggest that regulation of Hoxc8 in baleen whales differs from other mammalian species and may be associated with variation in axial morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

teashirt was initially identified as a gene required for the specification of the trunk segments in Drosophila embryogenesis and encodes a transcription factor with zinc finger motifs. We report here that targeted expression of teashirt in imaginal discs is sufficient to induce ectopic eye formation in non-eye tissues, a phenotype similar to that produced from targeted expression of eyeless, dachshund, and eyes absent. Furthermore, teashirt and eyeless induce the expression of each other, suggesting that teashirt is part of the gene network that functions to specify eye identity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormalities of fatty acid metabolism are recognized to play a significant role in human disease, but the mechanisms remain poorly understood. Long-chain acyl-CoA dehydrogenase (LCAD) catalyzes the initial step in mitochondrial fatty acid oxidation (FAO). We produced a mouse model of LCAD deficiency with severely impaired FAO. Matings between LCAD +/− mice yielded an abnormally low number of LCAD +/− and −/− offspring, indicating frequent gestational loss. LCAD −/− mice that reached birth appeared normal, but had severely reduced fasting tolerance with hepatic and cardiac lipidosis, hypoglycemia, elevated serum free fatty acids, and nonketotic dicarboxylic aciduria. Approximately 10% of adult LCAD −/− males developed cardiomyopathy, and sudden death was observed in 4 of 75 LCAD −/− mice. These results demonstrate the crucial roles of mitochondrial FAO and LCAD in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice in which the genes encoding the parathyroid hormone (PTH)-related peptide (PTHrP) or the PTH/PTHrP receptor have been ablated by homologous recombination show skeletal dysplasia due to accelerated endochondral bone formation, and die at birth or in utero, respectively. Skeletal abnormalities due to decelerated chondrocyte maturation are observed in transgenic mice where PTHrP expression is targeted to the growth plate, and in patients with Jansen metaphyseal chondrodysplasia, a rare genetic disorder caused by constitutively active PTH/PTHrP receptors. These and other findings thus indicate that PTHrP and its receptor are essential for chondrocyte differentiation. To further explore the role of the PTH/PTHrP receptor in this process, we generated transgenic mice in which expression of a constitutively active receptor, HKrk-H223R, was targeted to the growth plate by the rat α1 (II) collagen promoter. Two major goals were pursued: (i) to investigate how constitutively active PTH/PTHrP receptors affect the program of chondrocyte maturation; and (ii) to determine whether expression of the mutant receptor would correct the severe growth plate abnormalities of PTHrP-ablated mice (PTHrP−/−). The targeted expression of constitutively active PTH/PTHrP receptors led to delayed mineralization, decelerated conversion of proliferative chondrocytes into hypertrophic cells in skeletal segments that are formed by the endochondral process, and prolonged presence of hypertrophic chondrocytes with delay of vascular invasion. Furthermore, it corrected at birth the growth plate abnormalities of PTHrP−/− mice and allowed their prolonged survival. “Rescued” animals lacked tooth eruption and showed premature epiphyseal closure, indicating that both processes involve PTHrP. These findings suggest that rescued PTHrP−/− mice may gain considerable importance for studying the diverse, possibly tissue-specific role(s) of PTHrP in postnatal development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The zebrafish system offers many unique opportunities for the study of molecular biology. To date, only random mutagenesis, and not directed gene knockouts, have been demonstrated in this system. To more fully develop the potential of the zebrafish system, an approach to effectively inhibit the expression of any targeted gene in the developing zebrafish embryo has been developed. This approach uses a transient, cytoplasmic, T7 expression system, injected into the fertilized zebrafish egg to rapidly produce high levels of a ribozyme directed against the mRNA encoded by the targeted gene to inhibit its expression. In a demonstration of this strategy, expression of the recessive dominant zebrafish no tail gene was effectively inhibited by using this strategy to yield a phenotype identical to that resulting from a known defective mutation in this same gene. This, ribozyme-mediated, message deletion strategy may have use in determining the function of genetic coding sequences of unknown function.