135 resultados para Synaptic vesicle recycling
Resumo:
The stem-loop binding protein (SLBP1) binds the 3′ stem-loop of histone pre-mRNA and is required for efficient processing of histone transcripts in the nucleus. We examined the localization of SLBP1 in the germinal vesicle of Xenopus laevis oocytes. In spread preparations of germinal vesicle contents, an anti-SLBP1 antibody stained coiled bodies and specific chromosomal loci, including terminal granules, axial granules, and some loops. After injection of myc-tagged SLBP1 transcripts into the oocyte cytoplasm, newly translated myc-SLBP1 protein was detectable in coiled bodies within 4 h and in terminal and axial granules by 8 h. To identify the region(s) of SLBP1 necessary for subnuclear localization, we subcloned various parts of the SLBP1 cDNA and injected transcripts of these into the cytoplasm of oocytes. We determined that 113 amino acids at the carboxy terminus of SLBP1 are sufficient for coiled body localization and that disruption of a previously defined RNA-binding domain did not alter this localization. Coiled bodies also contain the U7 small nuclear ribonucleoprotein particle (snRNP), which participates in cleavage of the 3′ end of histone pre-mRNA. The colocalization of SLBP1 and the U7 snRNP in the coiled body suggests coordinated control of their functions, perhaps through a larger histone-processing particle. Some coiled bodies are attached to the lampbrush chromosomes at the histone gene loci, consistent with the view that coiled bodies in the oocyte recruit histone-processing factors to the sites of histone pre-mRNA transcription. The non-histone chromosomal sites at which SLBP1 is found include the genes coding for 5 S rRNA, U1 snRNA, and U2 snRNA, suggesting a wider role for SLBP1 in the biosynthesis of small non-spliced RNAs.
Resumo:
Pseudomonas exotoxin (PE) is a cytotoxin which, after endocytosis, is delivered to the cytosol where it inactivates protein synthesis. Using diaminobenzidine cytochemistry, we found over 94% of internalized PE in transferrin (Tf) -positive endosomes of lymphocytes. When PE translocation was examined in a cell-free assay using purified endocytic vesicles, more than 40% of endosomal 125I-labeled PE was transported after 2 h at 37°C, whereas a toxin inactivated by point mutation in its translocation domain was not translocated. Sorting of endosomes did not allow cell-free PE translocation, whereas active PE transmembrane transport was observed after > 10 min of endocytosis when PE and fluorescent-Tf were localized by confocal immunofluorescence microscopy within a rab5-positive and rab4- and rab7-negative recycling compartment in the pericentriolar region of the cell. Accordingly, when PE delivery to this structure was inhibited using a 20°C endocytosis temperature, subsequent translocation from purified endosomes was impaired. Translocation was also inhibited when endosomes were obtained from cells labeled with PE in the presence of brefeldin A, which caused fusion of translocation-competent recycling endosomes with translocation-incompetent sorting elements. No PE processing was observed in lymphocyte endosomes, the full-sized toxin was translocated and recovered in an enzymatically active form. ATP hydrolysis was found to directly provide the energy required for PE translocation. Inhibitors of endosome acidification (weak bases, protonophores, or bafilomycin A1) when added to the assay did not significantly affect 125I-labeled PE translocation, demonstrating that this transport is independent of the endosome-cytosol pH gradient. Nevertheless, when 125I-labeled PE endocytosis was performed in the presence of one of these molecules, translocation from endosomes was strongly inhibited, indicating that exposure to acidic pH is a prerequisite for PE membrane traversal. When applied during endocytosis, treatments that protect cells against PE intoxication (low temperatures, inhibitors of endosome acidification, and brefeldin A) impaired 125I-labeled PE translocation from purified endosomes. We conclude that PE translocation from a late receptor recycling compartment is implicated in the lymphocyte intoxication procedure.
Resumo:
Formation and discharge of dense-core secretory vesicles depend on controlled rearrangement of the core proteins during their assembly and dispersal. The ciliate Tetrahymena thermophila offers a simple system in which the mechanisms may be studied. Here we show that most of the core consists of a set of polypeptides derived proteolytically from five precursors. These share little overall amino acid identity but are nonetheless predicted to have structural similarity. In addition, sites of proteolytic processing are notably conserved and suggest that specific endoproteases as well as carboxypeptidase are involved in core maturation. In vitro binding studies and sequence analysis suggest that the polypeptides bind calcium in vivo. Core assembly and postexocytic dispersal are compartment-specific events. Two likely regulatory factors are proteolytic processing and exposure to calcium. We asked whether these might directly influence the conformations of core proteins. Results using an in vitro chymotrypsin accessibility assay suggest that these factors can induce sequential structural rearrangements. Such progressive changes in polypeptide folding may underlie the mechanisms of assembly and of rapid postexocytic release. The parallels between dense-core vesicles in different systems suggest that similar mechanisms are widespread in this class of organelles.
Resumo:
Rubella virus E1 glycoprotein normally complexes with E2 in the endoplasmic reticulum (ER) to form a heterodimer that is transported to and retained in the Golgi complex. In a previous study, we showed that in the absence of E2, unassembled E1 subunits accumulate in a tubular pre-Golgi compartment whose morphology and biochemical properties are distinct from both rough ER and Golgi. We hypothesized that this compartment corresponds to hypertrophied ER exit sites that have expanded in response to overexpression of E1. In the present study we constructed BHK cells stably expressing E1 protein containing a cytoplasmically disposed epitope and isolated the pre-Golgi compartment from these cells by cell fractionation and immunoisolation. Double label indirect immunofluorescence in cells and immunoblotting of immunoisolated tubular networks revealed that proteins involved in formation of ER-derived transport vesicles, namely p58/ERGIC 53, Sec23p, and Sec13p, were concentrated in the E1-containing pre-Golgi compartment. Furthermore, budding structures were evident in these membrane profiles, and a highly abundant but unknown 65-kDa protein was also present. By comparison, marker proteins of the rough ER, Golgi, and COPI vesicles were not enriched in these membranes. These results demonstrate that the composition of the tubular networks corresponds to that expected of ER exit sites. Accordingly, we propose the name SEREC (smooth ER exit compartment) for this structure.
Resumo:
Rab2 immunolocalizes to pre-Golgi intermediates (vesicular-tubular clusters [VTCs]) that are the first site of segregation of anterograde- and retrograde-transported proteins and a major peripheral site for COPI recruitment. Our previous work showed that Rab2 Q65L (equivalent to Ras Q61L) inhibited endoplasmic reticulum (ER)-to-Golgi transport in vivo. In this study, the biochemical properties of Rab2 Q65L were analyzed. The mutant protein binds GDP and GTP and has a low GTP hydrolysis rate that suggests that Rab2 Q65L is predominantly in the GTP-bound–activated form. The purified protein arrests vesicular stomatitis virus glycoprotein transport from VTCs in an assay that reconstitutes ER-to-Golgi traffic. A quantitative binding assay was used to measure membrane binding of β-COP when incubated with the mutant. Unlike Rab2 that stimulates recruitment, Rab2 Q65L showed a dose-dependent decrease in membrane-associated β-COP when incubated with rapidly sedimenting membranes (ER, pre-Golgi, and Golgi). The mutant protein does not interfere with β-COP binding but stimulates the release of slowly sedimenting vesicles containing Rab2, β-COP, and p53/gp58 but lacking anterograde grade-directed cargo. To complement the biochemical results, we observed in a morphological assay that Rab2 Q65L caused vesiculation of VTCs that accumulated at 15°C. These data suggest that the Rab2 protein plays a role in the low-temperature–sensitive step that regulates membrane flow from VTCs to the Golgi complex and back to the ER.
Resumo:
Synaptobrevins/vesicle-associated membrane proteins (VAMPs) together with syntaxins and a synaptosome-associated protein of 25 kDa (SNAP-25) are the main components of a protein complex involved in the docking and/or fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, biochemical, and cell biological characterization of a novel member of the synaptobrevin/VAMP family. The amino acid sequence of endobrevin has 32, 33, and 31% identity to those of synaptobrevin/VAMP-1, synaptobrevin/VAMP-2, and cellubrevin, respectively. Membrane fractionation studies demonstrate that endobrevin is enriched in membrane fractions that are also enriched in the asialoglycoprotein receptor. Indirect immunofluorescence microscopy establishes that endobrevin is primarily associated with the perinuclear vesicular structures of the early endocytic compartment. The preferential association of endobrevin with the early endosome was further established by electron microscopy (EM) immunogold labeling. In vitro binding assays show that endobrevin interacts with immobilized recombinant α-SNAP fused to glutathione S-transferase (GST). Our results highlight the general importance of members of the synaptobrevin/VAMP protein family in membrane traffic and provide new avenues for future functional and mechanistic studies of this protein as well as the endocytotic pathway.
Resumo:
Activated GTP-bound Rab proteins are thought to interact with effectors to elicit vesicle targeting and fusion events. Vesicle-associated v-SNARE and target membrane t-SNARE proteins are also involved in vesicular transport. Little is known about the functional relationship between Rabs and SNARE protein complexes. We have constructed an activated allele of VPS21, a yeast Rab protein involved in vacuolar protein sorting, and demonstrated an allele-specific interaction between Vps21p and Vac1p. Vac1p was found to bind the Sec1p homologue Vps45p. Although no association between Vps21p and Vps45p was seen, a genetic interaction between VPS21 and VPS45 was observed. Vac1p contains a zinc-binding FYVE finger that may bind phosphatidylinositol 3-phosphate [PtdIns(3)P]. In other FYVE domain proteins, this motif and PtdIns(3)P are necessary for membrane association. Vac1 proteins with mutant FYVE fingers still associated with membranes but showed vacuolar protein sorting defects and reduced interactions with Vps45p and activated Vps21p. Vac1p membrane association was not dependent on PtdIns(3)P, Pep12p, Vps21p, Vps45p, or the PtdIns 3-kinase, Vps34p. Vac1p FYVE finger mutant missorting phenotypes were suppressed by a defective allele of VPS34. These data indicate that PtdIns(3)P may perform a regulatory role, possibly involved in mediating Vac1p protein–protein interactions. We propose that activated-Vps21p interacts with its effector, Vac1p, which interacts with Vps45p to regulate the Golgi to endosome SNARE complex.
Resumo:
We report here the characterization of gp27 (hp24γ3), a glycoprotein of the p24 family of small and abundant transmembrane proteins of the secretory pathway. Immunoelectron and confocal scanning microscopy show that at steady state, gp27 localizes to the cis side of the Golgi apparatus. In addition, some gp27 was detected in COPI- and COPII-coated structures throughout the cytoplasm. This indicated cycling that was confirmed in three ways. First, 15°C temperature treatment resulted in accumulation of gp27 in pre-Golgi structures colocalizing with anterograde cargo. Second, treatment with brefeldin A caused gp27 to relocate into peripheral structures positive for both KDEL receptor and COPII. Third, microinjection of a dominant negative mutant of Sar1p trapped gp27 in the endoplasmic reticulum (ER) by blocking ER export. Together, this shows that gp27 cycles extensively in the early secretory pathway. Immunoprecipitation and coexpression studies further revealed that a significant fraction of gp27 existed in a hetero-oligomeric complex. Three members of the p24 family, GMP25 (hp24α2), p24 (hp24β1), and p23 (hp24δ1), coprecipitated in what appeared to be stochiometric amounts. This heterocomplex was specific. Immunoprecipitation of p26 (hp24γ4) failed to coprecipitate GMP25, p24, or p23. Also, very little p26 was found coprecipitating with gp27. A functional requirement for complex formation was suggested at the level of ER export. Transiently expressed gp27 failed to leave the ER unless other p24 family proteins were coexpressed. Comparison of attached oligosaccharides showed that gp27 and GMP25 recycled differentially. Only a very minor portion of GMP25 displayed complex oligosaccharides. In contrast, all of gp27 showed modifications by medial and trans enzymes at steady state. We conclude from these data that a portion of gp27 exists as hetero-oligomeric complexes with GMP25, p24, and p23 and that these complexes are in dynamic equilibrium with individual p24 proteins to allow for differential recycling and distributions.
Resumo:
The trans-Golgi network (TGN) plays a pivotal role in directing proteins in the secretory pathway to the appropriate cellular destination. VAMP4, a recently discovered member of the vesicle-associated membrane protein (VAMP) family of trafficking proteins, has been suggested to play a role in mediating TGN trafficking. To better understand the function of VAMP4, we examined its precise subcellular distribution. Indirect immunofluorescence and electron microscopy revealed that the majority of VAMP4 localized to tubular and vesicular membranes of the TGN, which were in part coated with clathrin. In these compartments, VAMP4 was found to colocalize with the putative TGN-trafficking protein syntaxin 6. Additional labeling was also present on clathrin-coated and noncoated vesicles, on endosomes and the medial and trans side of the Golgi complex, as well as on immature secretory granules in PC12 cells. Immunoprecipitation of VAMP4 from rat brain detergent extracts revealed that VAMP4 exists in a complex containing syntaxin 6. Converging lines of evidence implicate a role for VAMP4 in TGN-to-endosome transport.
Resumo:
Screening of a library derived from primary human endothelial cells revealed a novel human isoform of vesicle-associated membrane protein-1 (VAMP-1), a protein involved in the targeting and/or fusion of transport vesicles to their target membrane. We have termed this novel isoform VAMP-1B and designated the previously described isoform VAMP-1A. VAMP-1B appears to be an alternatively spliced form of VAMP-1. A similar rat splice variant of VAMP-1 (also termed VAMP-1B) has recently been reported. Five different cultured cell lines, from different lineages, all contained VAMP-1B but little or no detectable VAMP-1A mRNA, as assessed by PCR. In contrast, brain mRNA contained VAMP-1A but no VAMP-1B. The VAMP-1B sequence encodes a protein identical to VAMP-1A except for the carboxy-terminal five amino acids. VAMP-1 is anchored in the vesicle membrane by a carboxy-terminal hydrophobic sequence. In VAMP-1A the hydrophobic anchor is followed by a single threonine, which is the carboxy-terminal amino acid. In VAMP-1B the predicted hydrophobic membrane anchor is shortened by four amino acids, and the hydrophobic sequence is immediately followed by three charged amino acids, arginine-arginine-aspartic acid. Transfection of human endothelial cells with epitope-tagged VAMP-1B demonstrated that VAMP-1B was targeted to mitochondria whereas VAMP-1A was localized to the plasma membrane and endosome-like structures. Analysis of C-terminal mutations of VAMP-1B demonstrated that mitochondrial targeting depends both on the addition of positive charge at the C terminus and a shortened hydrophobic membrane anchor. These data suggest that mitochondria may be integrated, at least at a mechanistic level, to the vesicular trafficking pathways that govern protein movement between other organelles of the cell.
Resumo:
Membrane traffic in eukaryotic cells relies on recognition between v-SNAREs on transport vesicles and t-SNAREs on target membranes. Here we report the identification of AtVTI1a and AtVTI1b, two Arabidopsis homologues of the yeast v-SNARE Vti1p, which is required for multiple transport steps in yeast. AtVTI1a and AtVTI1b share 60% amino acid identity with one another and are 32 and 30% identical to the yeast protein, respectively. By suppressing defects found in specific strains of yeast vti1 temperature-sensitive mutants, we show that AtVTI1a can substitute for Vti1p in Golgi-to-prevacuolar compartment (PVC) transport, whereas AtVTI1b substitutes in two alternative pathways: the vacuolar import of alkaline phosphatase and the so-called cytosol-to-vacuole pathway used by aminopeptidase I. Both AtVTI1a and AtVTI1b are expressed in all major organs of Arabidopsis. Using subcellular fractionation and immunoelectron microscopy, we show that AtVTI1a colocalizes with the putative vacuolar cargo receptor AtELP on the trans-Golgi network and the PVC. AtVTI1a also colocalizes with the t-SNARE AtPEP12p to the PVC. In addition, AtVTI1a and AtPEP12p can be coimmunoprecipitated from plant cell extracts. We propose that AtVTI1a functions as a v-SNARE responsible for targeting AtELP-containing vesicles from the trans-Golgi network to the PVC, and that AtVTI1b is involved in a different membrane transport process.
Resumo:
Clathrin-coated vesicles (CCV) mediate protein sorting and vesicular trafficking from the plasma membrane and the trans-Golgi network. Before delivery of the vesicle contents to the target organelles, the coat components, clathrin and adaptor protein complexes (APs), must be released. Previous work has established that hsc70/the uncoating ATPase mediates clathrin release in vitro without the release of APs. AP release has not been reconstituted in vitro, and nothing is known about the requirements for this reaction. We report a novel quantitative assay for the ATP- and cytosol- dependent release of APs from CCV. As expected, hsc70 is not sufficient for AP release; however, immunodepletion and reconstitution experiments establish that it is necessary. Interestingly, complete clathrin release is not a prerequisite for AP release, suggesting that hsc70 plays a dual role in recycling the constituents of the clathrin coat. This assay provides a functional basis for identification of the additional cytosolic factor(s) required for AP release.
Resumo:
A temperature-sensitive mutant, sec34-2, is defective in the late stages of endoplasmic reticulum (ER)-to-Golgi transport. A high-copy suppressor screen that uses the sec34-2 mutant has resulted in the identification of the SEC34 structural gene and a novel gene called GRP1. GRP1 encodes a previously unidentified hydrophilic yeast protein related to the mammalian Golgi protein golgin-160. Although GRP1 is not essential for growth, the grp1Δ mutation displays synthetic lethal interactions with several mutations that result in ER accumulation and a block in the late stages of ER-to-Golgi transport, but not with those that block the budding of vesicles from the ER. Our findings suggest that Grp1p may facilitate membrane traffic indirectly, possibly by maintaining Golgi function. In an effort to identify genes whose products physically interact with Sec34p, we also tested the ability of overexpressed SEC34 to suppress known secretory mutations that block vesicular traffic between the ER and the Golgi. This screen revealed that SEC34 specifically suppresses sec35-1. SEC34 encodes a hydrophilic protein of ∼100 kDa. Like Sec35p, which has been implicated in the tethering of ER-derived vesicles to the Golgi, Sec34p is predominantly soluble. Sec34p and Sec35p stably associate with each other to form a multiprotein complex of ∼480 kDa. These data indicate that Sec34p acts in conjunction with Sec35p to mediate a common step in vesicular traffic.
Resumo:
Caenorhabditis elegans dynamin is expressed at high levels in neurons and at lower levels in other cell types, consistent with the important role that dynamin plays in the recycling of synaptic vesicles. Indirect immunofluorescence showed that dynamin is concentrated along the dorsal and ventral nerve cords and in the synapse-rich nerve ring. Green fluorescent protein (GFP) fused to the N terminus of dynamin is localized to synapse-rich regions. Furthermore, this chimera was detected along the apical membrane of intestinal cells, in spermathecae, and in coelomocytes. Dynamin localization was not affected by disrupting axonal transport of synaptic vesicles in the unc-104 (kinesin) mutant. To investigate the alternative mechanisms that dynamin might use for translocation to the synapse, we systematically tested the localization of different protein domains by fusion to GFP. Localization of each chimera was measured in one specific neuron, the ALM. The GTPase, a middle domain, and the putative coiled coil each contribute to synaptic localization. Surprisingly, the pleckstrin homology domain and the proline-rich domain, which are known to bind to coated-pit constituents, did not contribute to synaptic localization. The GFP-GTPase chimera was most strongly localized, although the GTPase domain has no known interactions with proteins other than with dynamin itself. Our results suggest that different dynamin domains contribute to axonal transport and the sequestration of a pool of dynamin molecules in synaptic cytosol.
Resumo:
One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.