158 resultados para Rubisco small subunit gene ( rbcS) Promoter
Resumo:
Several lysines (Lys) were determined to be involved in the regulation of the ADP-glucose (Glc) pyrophosphorylase from spinach leaf and the cyanobacterium Anabaena sp. PCC 7120 (K. Ball, J. Preiss [1994] J Biol Chem 269: 2470624711; Y. Charng, A.A. Iglesias, J. Preiss [1994] J Biol Chem 269: 2410724113). Site-directed mutagenesis was used to investigate the relative roles of the conserved Lys in the heterotetrameric enzyme from potato (Solanum tuberosum L.) tubers. Mutations to alanine of Lys-404 and Lys-441 on the small subunit decreased the apparent affinity for the activator, 3-phosphoglycerate, by 3090- and 54-fold, respectively. The apparent affinity for the inhibitor, phosphate, decreased greater than 400-fold. Mutation of Lys-441 to glutamic acid showed even larger effects. When Lys-417 and Lys-455 on the large subunit were mutated to alanine, the phosphate inhibition was not altered and the apparent affinity for the activator decreased only 9- and 3-fold, respectively. Mutations of these residues to glutamic acid only decreased the affinity for the activator 12- and 5-fold, respectively. No significant changes were observed on other kinetic constants for the substrates ADP-Glc, pyrophosphate, and Mg2+. These data indicate that Lys-404 and Lys-441 on the small subunit are more important for the regulation of the ADP-Glc pyrophosphorylase than their homologous residues in the large subunit.
Resumo:
Lysine (Lys)-195 in the homotetrameric ADP-glucose pyrophosphorylase (ADPGlc PPase) from Escherichia coli was shown previously to be involved in the binding of the substrate glucose-1-phosphate (Glc-1-P). This residue is highly conserved in the ADPGlc PPase family. Site-directed mutagenesis was used to investigate the function of this conserved Lys residue in the large and small subunits of the heterotetrameric potato (Solanum tuberosum) tuber enzyme. The apparent affinity for Glc-1-P of the wild-type enzyme decreased 135- to 550-fold by changing Lys-198 of the small subunit to arginine, alanine, or glutamic acid, suggesting that both the charge and the size of this residue influence Glc-1-P binding. These mutations had little effect on the kinetic constants for the other substrates (ATP and Mg2+ or ADP-Glc and inorganic phosphate), activator (3-phosphoglycerate), inhibitor (inorganic phosphate), or on the thermal stability. Mutagenesis of the corresponding Lys (Lys-213) in the large subunit had no effect on the apparent affinity for Glc-1-P by substitution with arginine, alanine, or glutamic acid. A double mutant, SK198RLK213R, was also obtained that had a 100-fold reduction of the apparent affinity for Glc-1-P. The data indicate that Lys-198 in the small subunit is directly involved in the binding of Glc-1-P, whereas they appear to exclude a direct role of Lys-213 in the large subunit in the interaction with this substrate.
Resumo:
Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the ear domain of the clathrin adaptor AP-1 subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2), the major Gga protein, accentuates growth and -factor maturation defects in cells carrying a temperature-sensitive allele of the clathrin heavy chain gene. Cells carrying either gga2 or a deletion of the AP-1 subunit gene (apl2) alone are phenotypically normal, but cells carrying both gga2 and apl2 are defective in growth, -factor maturation, and transport of carboxypeptidase S to the vacuole. Disruption of both GGA genes and APL2 results in cells so severely compromised in growth that they form only microcolonies. Gga proteins can bind clathrin in vitro and cofractionate with clathrin-coated vesicles. Our results indicate that yeast Gga proteins play an important role in cargo-selective clathrin-mediated protein traffic from the trans-Golgi network to endosomes.
Resumo:
We have previously shown that three distinct DNA-binding activities, in crude form, are necessary for the ATP-dependent assembly of a specific and stable multiprotein complex at a yeast origin of replication. Here we show the purification of one of these DNA binding activities, referred to as origin binding factor 2 (OBF2). The purified protein is a heterodimer composed of two polypeptides with molecular mass values of 65 and 80 kDa as determined by SDS/PAGE. Purified OBF2 not only binds DNA but also supports the formation of a protein complex at essential sequences within the ARS121 origin of replication. Interestingly, OBF2 binds tightly and nonspecifically to both duplex DNA and single-stranded DNA. The interaction with duplex DNA occurs at the termini. N-terminal sequencing of the 65-kDa subunit has revealed that this polypeptide is identical to the previously identified HDF1 peptide, a yeast homolog of the small subunit of the mammalian Ku autoantigen. Although the potential involvement of Ku in DNA metabolic events has been proposed, this is the first requirement for a Ku-like protein in the assembly of a protein complex at essential sequences within a eukaryotic origin of replication.
Resumo:
Sequences of nuclear-encoded small-subunit rRNA genes have been determined for representatives of the enigmatic genera Dermocystidium, Ichthyophonus, and Psorospermium, protistan parasites of fish and crustaceans. The small-subunit rRNA genes from these parasites and from the "rosette agent" (also a parasite of fish) together form a novel, statistically supported clade. Phylogenetic analyses demonstrate this clade to diverge near the animal-fungal dichotomy, although more precise resolution is problematic. In the most parsimonious and maximally likely phylogenetic frameworks inferred from the most stably aligned sequence regions, the clade constitutes the most basal branch of the metazoa; but within a limited range of model parameters, and in some analyses that incorporate less well-aligned sequence regions, an alternative topology in which it diverges immediately before the animal-fungal dichotomy was recovered. Mitochondrial cristae of Dermocystidium spp. are flat, whereas those of Ichthyophonus hoferi appear tubulovesiculate. These results extend our understanding of the types of organisms from which metazoa and fungi may have evolved.
Resumo:
Reactive oxygen intermediates generated by the phagocyte NADPH oxidase are critically important components of host defense. However, these highly toxic oxidants can cause significant tissue injury during inflammation; thus, it is essential that their generation and inactivation are tightly regulated. We show here that an endogenous proline-arginine (PR)-rich antibacterial peptide, PR-39, inhibits NADPH oxidase activity by blocking assembly of this enzyme through interactions with Src homology 3 domains of a cytosolic component. This neutrophil-derived peptide inhibited oxygen-dependent microbicidal activity of neutrophils in whole cells and in a cell-free assay of NADPH oxidase. Both oxidase inhibitory and direct antimicrobial activities were defined within the amino-terminal 26 residues of PR-39. Oxidase inhibition was attributed to binding of PR-39 to the p47phox cytosolic oxidase component. Its effects involve both a polybasic amino-terminal segment and a proline-rich core region of PR-39 that binds to the p47phox Src homology 3 domains and, thereby, inhibits interaction with the small subunit of cytochrome b558, p22phox. These findings suggest that PR-39, which has been shown to be involved in tissue repair processes, is a multifunctional peptide that can regulate NADPH oxidase production of superoxide anion O2-. thus limiting excessive tissue damage during inflammation.
Resumo:
A new method for computing evolutionary distances between DNA sequences is proposed. Contrasting with classical methods, the underlying model does not assume that sequence base compositions (A, C, G, and T contents) are at equilibrium, thus allowing unequal base compositions among compared sequences. This makes the method more efficient than the usual ones in recovering phylogenetic trees from sequence data when base composition is heterogeneous within the data set, as we show by using both simulated and empirical data. When applied to small-subunit ribosomal RNA sequences from several prokaryotic or eukaryotic organisms, this method provides evidence for an early divergence of the microsporidian Vairimorpha necatrix in the eukaryotic lineage.
Resumo:
The reconstruction of multitaxon trees from molecular sequences is confounded by the variety of algorithms and criteria used to evaluate trees, making it difficult to compare the results of different analyses. A global method of multitaxon phylogenetic reconstruction described here, Bootstrappers Gambit, can be used with any four-taxon algorithm, including distance, maximum likelihood, and parsimony methods. It incorporates a Bayesian-Jeffreys'-bootstrap analysis to provide a uniform probability-based criterion for comparing the results from diverse algorithms. To examine the usefulness of the method, the origin of the eukaryotes has been investigated by the analysis of ribosomal small subunit RNA sequences. Three common algorithms (paralinear distances, Jukes-Cantor distances, and Kimura distances) support the eocyte topology, whereas one (maximum parsimony) supports the archaebacterial topology, suggesting that the eocyte prokaryotes are the closest prokaryotic relatives of the eukaryotes.
Resumo:
Nuclear-encoded proteins targeted to the chloroplast are typically synthesized with N-terminal transit peptides which are proteolytically removed upon import. Structurally related proteins of 145 and 143 kDa copurify with a soluble chloroplast processing enzyme (CPE) that cleaves the precursor for the major light-harvesting chlorophyll a/b binding protein and have been implicated in the maturation of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and acyl carrier protein. The 145- and 143-kDa proteins have not been found as a heterodimer and thus may represent functionally independent isoforms encoded by separate genes. Here we describe the primary structure of a 140-kDa polypeptide encoded by cDNAs isolated by using antibodies raised against the 145/143-kDa doublet. The 140-kDa polypeptide contains a transit peptide, and strikingly, a His-Xaa-Xaa-Glu-His zinc-binding motif that is conserved in a recently recognized family of metalloendopeptidases, which includes Escherichia coli protease III, insulin-degrading enzyme, and subunit beta of the mitochondrial processing peptidase. Identity of 25-30%, concentrated near the N terminus of the 140-kDa polypeptide, is found with these proteases. Expression of CPE in leaves is not light dependent. Indeed, transcripts are present in dark-grown plants, and the 145/143-kDa doublet and proteolytic activity are both found in etioplasts, as well as in root plastids. Thus, CPE appears to be a necessary component of the import machinery in photosynthetic and nonphotosynthetic tissues, and it may function as a general stromal processing peptidase in plastids.
Resumo:
We have explored the evolutionary history of the Apicomplexa and two related protistan phyla, Dinozoa and Ciliophora, by comparing the nucleotide sequences of small subunit ribosomal RNA genes. We conclude that the Plasmodium lineage, to which the malarial parasites belong, diverged from other apicomplexan lineages (piroplasmids and coccidians) several hundred million years ago, perhaps even before the Cambrian. The Plasmodium radiation, which gave rise to several species parasitic to humans, occurred approximately 129 million years ago; Plasmodium parasitism of humans has independently arisen several times. The origin of apicomplexans (Plasmodium), dinoflagellates, and ciliates may be > 1 billion years old, perhaps older than the three multicellular kingdoms of animals, plants, and fungi. Digenetic parasitism independently evolved several times in the Apicomplexa.
Resumo:
The RNA polymerase II and III small nuclear RNA (snRNA) promoters contain a common basal promoter element, the proximal sequence element (PSE). The PSE binds a multisubunit complex we refer to as the snRNA activating protein complex (SNAPc). At least four polypeptides are visible in purified SNAPc preparations, which migrate with apparent molecular masses of 43, 45, 50, and 190 kDa on SDS/polyacrylamide gels. In addition, purified preparations of SNAPc contain variable amounts of TATA box binding protein (TBP). An important question is whether the PSEs of RNA polymerase II and III snRNA promoters recruit the exact same SNAP complex or slightly different versions of SNAPc, differing, for example, by the presence or absence of a subunit. To address this question, we are isolating cDNAs encoding different subunits of SNAPc. We have previously isolated the cDNA encoding the 43-kDa subunit SNAP43. We now report the isolation of the cDNA that encodes the p45 polypeptide. Antibodies directed against p45 retard the mobility of the SNAPc-PSE complex in an electrophoretic mobility shift assay, indicating that p45 is indeed part of SNAPc. We therefore refer to this protein as SNAP45. SNAP45 is exceptionally proline-rich, interacts strongly with TBP, and, like SNAP43, is required for both RNA polymerase II and III transcription of snRNA genes.
Resumo:
beta 2-Microglobulin is an essential subunit of major histocompatibility complex (Mhc) class I molecules, which present antigenic peptides to T lymphocytes. We sequenced a number of cDNAs and two genomic clones corresponding to chicken beta 2-microglobulin. The chicken beta 2-microglobulin gene has a similar genomic organization but smaller introns and higher G+C content than mammalian beta 2-microglobulin genes. The promoter region is particularly G+C-rich and contains, in addition to interferon regulatory elements, potential S/W, X, and Y boxes that were originally described for mammalian class II but not class I alpha or beta 2-microglobulin genes. There is a single chicken beta 2-microglobulin gene that has little polymorphism in the coding region. Restriction fragment length polymorphisms from Mhc homozygous lines, Mhc congenic lines, and backcross families, as well as in situ hybridization, show that the beta 2-microglobulin gene is located on a microchromosome different from the one that contains the chicken Mhc. We propose that the structural similarities between the beta 2-microglobulin and Mhc genes in the chicken are due to their presence on microchromosomes and suggest that these features and the microchromosomes appeared by deletion of DNA in the lineage leading to the birds.
Resumo:
In Azotobacter vinelandii, deletion of the fdxA gene that encodes a well characterized seven-iron ferredoxin (FdI) is known to lead to overexpression of the FdI redox partner, NADPH:ferredoxin reductase (FPR). Previous studies have established that this is an oxidative stress response in which the fpr gene is transcriptionally activated to the same extent in response to either addition of the superoxide propagator paraquat to the cells or to fdxA deletion. In both cases, the activation occurs through a specific DNA sequence located upstream of the fpr gene. Here, we report the identification of the A. vinelandii protein that binds specifically to the paraquat activatable fpr promoter region as the E1 subunit of the pyruvate dehydrogenase complex (PDHE1), a central enzyme in aerobic respiration. Sequence analysis shows that PDHE1, which was not previously suspected to be a DNA-binding protein, has a helixturnhelix motif. The data presented here further show that FdI binds specifically to the DNA-bound PDHE1.
Resumo:
Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the -subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1- can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter.
Resumo:
Transcription of the genes for the human histone proteins H4, H3, H2A, H2B, and H1 is activated at the G1/S phase transition of the cell cycle. We have previously shown that the promoter complex HiNF-D, which interacts with cell cycle control elements in multiple histone genes, contains the key cell cycle factors cyclin A, CDC2, and a retinoblastoma (pRB) protein-related protein. However, an intrinsic DNA-binding subunit for HiNF-D was not identified. Many genes that are up-regulated at the G1/S phase boundary are controlled by E2F, a transcription factor that associates with cyclin-, cyclin-dependent kinase-, and pRB-related proteins. Using gel-shift immunoassays, DNase I protection, and oligonucleotide competition analyses, we show that the homeodomain protein CDP/cut, not E2F, is the DNA-binding subunit of the HiNF-D complex. The HiNF-D (CDP/cut) complex with the H4 promoter is immunoreactive with antibodies against CDP/cut and pRB but not p107, whereas the CDP/cut complex with a nonhistone promoter (gp91-phox) reacts only with CDP and p107 antibodies. Thus, CDP/cut complexes at different gene promoters can associate with distinct pRB-related proteins. Transient coexpression assays show that CDP/cut modulates H4 promoter activity via the HiNF-D-binding site. Hence, DNA replication-dependent histone H4 genes are regulated by an E2F-independent mechanism involving a complex of CDP/cut with cyclin A/CDC2/ RB-related proteins.