250 resultados para Replication protein A subunit 70 kDa


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to the five 70-kDa heat shock proteins (HSP70) common to germ cells and somatic tissues of mammals, spermatogenic cells synthesize HSP70-2 during meiosis. To determine if this unique stress protein has a critical role in meiosis, we used gene-targeting techniques to disrupt Hsp70-2 in mice. Male mice homozygous for the mutant allele (Hsp70-2 -/-) did not synthesize HSP70-2, lacked postmeiotic spermatids and mature sperm, and were infertile. However, neither meiosis nor fertility was affected in female Hsp70-2 -/- mice. We previously found that HSP70-2 is associated with synaptonemal complexes in the nucleus of meiotic spermatocytes from mice and hamsters. While synaptonemal complexes assembled in Hsp70-2 -/- spermatocytes, structural abnormalities became apparent in these cells by late prophase, and development rarely progressed to the meiotic divisions. Furthermore, analysis of nuclei and genomic DNA indicated that the failure of meiosis in Hsp70-2 -/- mice was coincident with a dramatic increase in spermatocyte apoptosis. These results suggest that HSP70-2 participates in synaptonemal complex function during meiosis in male germ cells and is linked to mechanisms that inhibit apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of integrin-like proteins in Candida albicans has been postulated because monoclonal antibodies to the leukocyte integrins alpha M and alpha X bind to blastospores and germ tubes, recognize a candidal surface protein of approximately 185 kDa, and inhibit candidal adhesion to human epithelium. The gene alpha INT1 was isolated from a library of C. albicans genomic DNA by screening with a cDNA probe from the transmembrane domain of human alpha M. The predicted polypeptide (alpha Int1p) of 188 kDa contains several motifs common to alpha M and alpha X: a putative I domain, two EF-hand divalent cation-binding sites, a transmembrane domain, and a cytoplasmic tail with a single tyrosine residue. An internal RGD tripeptide is also present. Binding of anti-peptide antibodies raised to potential extracellular domains of alpha Int1p confirms surface localization in C. albicans blastopores. By Southern blotting, alpha INT1 is unique to C. albicans. Expression of alpha INT1 under control of a galactose-inducible promoter led to the production of germ tubes in haploid Saccharomyces cerevisiae and in the corresponding ste12 mutant. Germ tubes were not observed in haploid yeast transformed with vector alone, in transformants expressing a galactose-inducible gene from Chlamydomonas, or in transformants grown in the presence of glucose or raffinose. Transformants producing alpha Int1p bound an anti-alpha M monoclonal antibody and exhibited enhanced aggregation. Studies of alpha Int1p reveal novel roles for primitive integrin-like proteins in adhesion and in STE12-independent morphogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent demonstration of the occurrence in rat brain and other nonpancreatic tissues of carboxypeptidase A (CPA) gene transcripts without associated catalytic activity could be ascribed to the presence of a soluble endogenous protein inhibitor. This tissue carboxypeptidase inhibitor (TCI), detected by the inhibition of added bovine pancreatic CPA, was purified from rat brain. Peptides were obtained by partial proteolysis of purified TCI, a protein of approximately 30 kDa, and starting from their sequences, a full-length cDNA encoding a 223-amino acid protein containing three potential phosphorylation sites was cloned from a cDNA library. Its identity with TCI was shown by expression in Escherichia coli of a recombinant protein recognized by antibodies raised against native TCI and display characteristic CPA-inhibiting activity. TCI appears as a hardly reversible, non-competitive, and potent inhibitor of CPA1 and CPA2 (Ki approximately 3 nM) and mast-cell CPA (Ki = 16 nM) and inactive on various other proteases. This pattern of selectivity might be attributable to a limited homology of a 11-amino acid sequence with sequences within the activation segments of CPA and CPB known to interact with residues within their active sites. The widespread expression of TCI in a number of tissues (e.g., brain, lung, or digestive tract) and its apparently cytosolic localization point to a rather general functional role, e.g., in the control of cytosolic protein degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular cellulase activity is readily induced when the chestnut blight fungus Cryphonectria parasitica is grown on cellulose substrate as the sole carbon source. However, an isogenic C. parasitica strain rendered hypovirulent due to hypovirus infection failed to secrete detectable cellulase activity when grown under parallel conditions. Efforts to identify C. parasitica cellulase-encoding genes resulted in the cloning of a cellobiohydrolase (exoglucanase, EC 3.2.1.91) gene designated chb-1. Northern blot analysis revealed an increase in cbh-1 transcript accumulation in a virus-free virulent C. parasitica strain concomitant with the induction of extracellular cellulase activity. In contrast, induction of cbh-1 transcript accumulation was suppressed in an isogenic hypovirus-infected strain. Significantly, virus-free C. parasitica strains rendered hypovirulent by transgenic cosuppression of a GTP-binding protein alpha subunit were also found to be deficient in the induction of cbh-1 transcript accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Receptor-G protein interaction is characterized by cycles of association and dissociation. We present evidence which indicates that during receptor-G protein interaction, the C-terminal tail of the G protein gamma subunit, which is masked in the beta gamma complex, is exposed and establishes high-affinity contact with the receptor. This potential conformational switch provides a mechanism to regulate receptor-G protein coupling. This switch may also be significant for the role of the beta gamma complex in regulation of effector function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pokeweed antiviral protein (PAP), a 29-kDa protein isolated from Phytolacca americana inhibits translation by catalytically removing a specific adenine residue from the 28S rRNA of eukaryotic ribosomes. PAP has potent antiviral activity against many plant and animal viruses, including human immunodeficiency virus. We describe here development of a positive selection system to isolate PAP mutants with reduced toxicity. In vitro translation in the presence or absence of microsomal membranes shows that PAP is synthesized as a precursor and undergoes at least two different proteolytic processing steps to generate mature PAP. The PAP cDNA was placed under control of the galactose-inducible GAL1 promoter and transformed into Saccharomyces cerevisiae. Induction of PAP expression was lethal to yeast. The PAP expression plasmid was mutagenized and plasmids encoding mutant PAP genes were identified by their failure to kill S. cerevisiae. A number of mutant alleles were sequenced. In one mutant, a point mutation at Glu-177 inactivated enzymatic function in vitro, suggesting that this glutamic acid residue is located at or near the catalytic site. Mutants with either point mutations near the N terminus or a nonsense mutation at residue 237 produced protein that was enzymatically active in vitro, suggesting that the toxicity of PAP is not due solely to enzymatic activity. Toxicity of PAP appears to be a multistep process that involves possibly different domains of the protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophages play a key role in both normal and pathological processes involving immune and inflammatory responses, to a large extent through their capacity to secrete a wide range of biologically active molecules. To identify some of these as yet not characterized molecules, we have used a subtraction cloning approach designed to identify genes expressed in association with macrophage activation. One of these genes, designated macrophage inhibitory cytokine 1 (MIC-1), encodes a protein that bears the structural characteristics of a transforming growth factor β (TGF-β) superfamily cytokine. Although it belongs to this superfamily, it has no strong homology to existing families, indicating that it is a divergent member that may represent the first of a new family within this grouping. Expression of MIC-1 mRNA in monocytoid cells is up-regulated by a variety of stimuli associated with activation, including interleukin 1β, tumor necrosis factor α (TNF-α), interleukin 2, and macrophage colony-stimulating factor but not interferon γ, or lipopolysaccharide (LPS). Its expression is also increased by TGF-β. Expression of MIC-1 in CHO cells results in the proteolytic cleavage of the propeptide and secretion of a cysteine-rich dimeric protein of Mr 25 kDa. Purified recombinant MIC-1 is able to inhibit lipopolysaccharide -induced macrophage TNF-α production, suggesting that MIC-1 acts in macrophages as an autocrine regulatory molecule. Its production in response to secreted proinflammatory cytokines and TGF-β may serve to limit the later phases of macrophage activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although three human genes encoding DNA ligases have been isolated, the molecular mechanisms by which these gene products specifically participate in different DNA transactions are not well understood. In this study, fractionation of a HeLa nuclear extract by DNA ligase I affinity chromatography resulted in the specific retention of a replication protein, proliferating cell nuclear antigen (PCNA), by the affinity resin. Subsequent experiments demonstrated that DNA ligase I and PCNA interact directly via the amino-terminal 118 aa of DNA ligase I, the same region of DNA ligase I that is required for localization of this enzyme at replication foci during S phase. PCNA, which forms a sliding clamp around duplex DNA, interacts with DNA pol δ and enables this enzyme to synthesize DNA processively. An interaction between DNA ligase I and PCNA that is topologically linked to DNA was detected. However, DNA ligase I inhibited PCNA-dependent DNA synthesis by DNA pol δ. These observations suggest that a ternary complex of DNA ligase I, PCNA and DNA pol δ does not form on a gapped DNA template. Consistent with this idea, the cell cycle inhibitor p21, which also interacts with PCNA and inhibits processive DNA synthesis by DNA pol δ, disrupts the DNA ligase I–PCNA complex. Thus, we propose that after Okazaki fragment DNA synthesis is completed by a PCNA–DNA pol δ complex, DNA pol δ is released, allowing DNA ligase I to bind to PCNA at the nick between adjacent Okazaki fragments and catalyze phosphodiester bond formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-induced apoptosis is mediated by caspases, which are cysteine proteases related to interleukin 1β-converting enzyme. We report here that TNF-induced activation of caspases results in the cleavage and activation of cytosolic phospholipase A2 (cPLA2) and that activated cPLA2 contributes to apoptosis. Inhibition of caspases by expression of a cowpox virus-derived inhibitor, CrmA, or by a specific tetrapeptide inhibitor of CPP32/caspase-3, acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibited TNF-induced activation of cPLA2 and apoptosis. TNF-induced activation of cPLA2 was accompanied by a cleavage of the 100-kDa cPLA2 to a 70-kDa proteolytic fragment. This cleavage was inhibited by Ac-DEVD-CHO in a similar manner as that of poly(ADP)ribose polymerase, a known substrate of CPP32/caspase-3. Interestingly, specific inhibition of cPLA2 enzyme activity by arachidonyl trifluoromethylketone (AACOCF3) partially inhibited TNF-induced apoptosis without inhibition of caspase activity. Thus, our results suggest a novel caspase-dependent activation pathway for cPLA2 during apoptosis and identify cPLA2 as a mediator of TNF-induced cell death acting downstream of caspases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factors (FGF) 1 and 2 and their tyrosine kinase receptor (FGFR) are present throughout the adult retina. FGFs are potential mitogens, but adult retinal cells are maintained in a nonproliferative state unless the retina is damaged. Our work aims to find a modulator of FGF signaling in normal and pathological retina. We identified and sequenced a truncated FGFR1 form from rat retina generated by the use of selective polyadenylation sites. This 70-kDa form of soluble extracellular FGFR1 (SR1) was distributed mainly localized in the inner nuclear layer of the retina, whereas the full-length FGFR1 form was detected in the retinal Muller glial cells. FGF2 and FGFR1 mRNA levels greatly increased in light-induced retinal degeneration. FGFR1 was detected in the radial fibers of activated retinal Muller glial cells. In contrast, SR1 mRNA synthesis followed a biphasic pattern of down- and up-regulation, and anti-SR1 staining was intense in retinal pigmented epithelial cells. The synthesis of SR1 and FGFR1 specifically and independently regulated in normal and degenerating retina suggests that changes in the proportion of various FGFR forms may control the bioavailability of FGFs and thus their potential as neurotrophic factors. This was demonstrated in vivo during retinal degeneration when recombinant SR1 inhibited the neurotrophic activity of exogenous FGF2 and increased damaging effects of light by inhibiting endogenous FGF. This study highlights the significance of the generation of SR1 in normal and pathological conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlamydomonas reinhardtii flagellar regeneration is accompanied by rapid induction of genes encoding a large set of flagellar structural components and provides a model system to study coordinate gene regulation and organelle assembly. After deflagellation, the abundance of a 70-kDa flagellar dynein intermediate chain (IC70, encoded by ODA6) mRNA increases approximately fourfold within 40 min and returns to predeflagellation levels by ∼90 min. We show by nuclear run-on that this increase results, in part, from increased rates of transcription. To localize cis induction elements, we created an IC70 minigene and measured accumulation, in C. reinhardtii, of transcripts from the endogenous gene and from introduced promoter deletion constructs. Clones containing 416 base pairs (bp) of 5′- and 2 kilobases (kb) of 3′-flanking region retained all sequences necessary for a normal pattern of mRNA abundance change after deflagellation. Extensive 5′- and 3′- flanking region deletions, which removed multiple copies of a proposed deflagellation-response element (the tub box), did not eliminate induction, and the IC70 5′-flanking region alone did not confer deflagellation responsiveness to a promoterless arylsulfatase (ARS) gene. Instead, an intron in the IC70 gene 5′-untranslated region was found to contain the deflagellation response element. These results suggest that the tub box does not play an essential role in deflagellation-induced transcriptional regulation of this dynein gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive and rapid in situ method was developed to visualize sites of single-stranded (ss) DNA in cultured cells and in experimental test animals. Anti-bromodeoxyuridine antibody recognizes the halogenated base analog incorporated into chromosomal DNA only when substituted DNA is in the single strand form. After treatment of cells with DNA-damaging agents or γ irradiation, ssDNA molecules form nuclear foci in a dose-dependent manner within 60 min. The mammalian recombination protein Rad51 and the replication protein A then accumulate at sites of ssDNA and form foci, suggesting that these are sites of recombinational DNA repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nondistorting C4′ backbone adducts serve as molecular tools to analyze the strategy by which a limited number of human nucleotide excision repair (NER) factors recognize an infinite variety of DNA lesions. We have constructed composite DNA substrates containing a noncomplementary site adjacent to a nondistorting C4′ adduct to show that the loss of hydrogen bonding contacts between partner strands is an essential signal for the recruitment of NER enzymes. This specific conformational requirement for excision is mediated by the affinity of xeroderma pigmentosum group A (XPA) protein for nonhybridizing sites in duplex DNA. XPA recognizes defective Watson–Crick base pair conformations even in the absence of DNA adducts or other covalent modifications, apparently through detection of hydrophobic base components that are abnormally exposed to the double helical surface. This recognition function of XPA is enhanced by replication protein A (RPA) such that, in combination, XPA and RPA constitute a potent molecular sensor of denatured base pairs. Our results indicate that the XPA–RPA complex may promote damage recognition by monitoring Watson–Crick base pair integrity, thereby recruiting the human NER system preferentially to sites where hybridization between complementary strands is weakened or entirely disrupted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldose reductase (ALR2), a NADPH-dependent aldo-keto reductase (AKR), is widely distributed in mammalian tissues and has been implicated in complications of diabetes, including diabetic nephropathy. To identify a renal-specific reductase belonging to the AKR family, representational difference analyses of cDNA from diabetic mouse kidney were performed. A full-length cDNA with an ORF of 855 nt and yielding a ≈1.5-kb mRNA transcript was isolated from a mouse kidney library. Human and rat homologues also were isolated, and they had ≈91% and ≈97% amino acid identity with mouse protein. In vitro translation of the cDNA yielded a protein product of ≈33 kDa. Northern and Western blot analyses, using the cDNA and antirecombinant protein antibody, revealed its expression exclusively confined to the kidney. Like ALR2, the expression was up-regulated in diabetic kidneys. Its mRNA and protein expression was restricted to renal proximal tubules. The gene neither codistributed with Tamm–Horsfall protein nor aquaporin-2. The deduced protein sequence revealed an AKR-3 motif located near the N terminus, unlike the other AKR family members where it is confined to the C terminus. Fluorescence quenching and reactive blue agarose chromatography studies revealed that it binds to NADPH with high affinity (KdNADPH = 66.9 ± 2.3 nM). This binding domain is a tetrapeptide (Met-Ala-Lys-Ser) located within the AKR-3 motif that is similar to the other AKR members. The identified protein is designated as RSOR because it is renal-specific with properties of an oxido-reductase, and like ALR2 it may be relevant in the renal complications of diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel multiple affinity purification (MAFT) or tandem affinity purification (TAP) tag has been constructed. It consists of the calmodulin binding peptide, six histidine residues, and three copies of the hemagglutinin epitope. This ‘CHH’ MAFT tag allows two or three consecutive purification steps, giving high purity. Active Clb2–Cdc28 kinase complex was purified from yeast cells after inserting the CHH tag into Clb2. Associated proteins were identified using mass spectrometry. These included the known associated proteins Cdc28, Sic1 and Cks1. Several other proteins were found including the 70 kDa chaperone, Ssa1.