83 resultados para Reconstitution archéologique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We searched for clonable committed T cell progenitors in the adult mouse bone marrow and isolated rare (≈0.05%) cells with the Thy-1hiCD2−CD16+CD44hiCD25−Lin− phenotype. In vivo experiments showed that these cells were progenitors committed only to reconstituting the T cell lineage of irradiated Ly5 congenic hosts. Reconstitution of the thymus was minimal compared with that of the bone marrow, spleen, and lymph nodes. At limiting dilutions, donor T cell reconstitution of the spleen frequently occurred without detectable donor cells in the thymus. Progenitors were capable of rapidly reconstituting athymic hosts. In conclusion, the clonable bone marrow progenitors were capable of T cell reconstitution predominantly by means of an extrathymic pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated two NADPH-cytochrome (Cyt) P450 reductase isoforms encoded by separate genes (AR1 and AR2) in Arabidopsis thaliana. We isolated AR1 and AR2 cDNAs using a mung bean (Phaseolus aureus L.) NADPH-Cyt P450 reductase cDNA as a probe. The recombinant AR1 and AR2 proteins produced using a baculovirus expression system showed similar Km values for Cyt c and NADPH, respectively. In the reconstitution system with a recombinant cinnamate 4-hydroxylase (CYP73A5), the recombinant AR1 and AR2 proteins gave the same level of cinnamate 4-hydroxylase activity (about 70 nmol min−1 nmol−1 P450). The AR2 gene expression was transiently induced by 4- and 3-fold within 1 h of wounding and light treatments, respectively, and the induction time course preceded those of CYP73A5 and a phenylalanine ammonia-lyase (PAL1) gene. On the contrary, the AR1 expression level did not change during the treatments. Analysis of the AR1 and AR2 gene structure revealed that only the AR2 promoter contained three putative sequence motifs (boxes P, A, and L), which are involved in the coordinated expression of CYP73A5 and other phenylpropanoid pathway genes. These results suggest the possibility that AR2 transcription may be functionally linked to the induced levels of phenylpropanoid pathway enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basic research in Epstein-Barr virus (EBV) molecular genetics has provided means to maintain episomes in human cells, to efficiently deliver episomes with up to 150 kbp of heterologous DNA to human B lymphocytes, and to immortalize human B lymphocytes with EBV recombinants that can maintain up to 120 kbp of heterologous DNA. Episome maintenance requires an EBV nuclear protein, EBNA1, whereas immortalization of cells with EBV recombinants requires EBNA1, EBNA2, EBNA3A, EBNA3C, EBNALP, and LMP1. EBV-derived vectors are useful for experimental genetic reconstitution in B lymphocytes, a cell type frequently used in establishing repositories of human genetic deficiencies. The ability of EBV-infected cells to establish a balanced state of persistence in normal humans raises the possibility that cells infected with EBV recombinants could be useful for genetic reconstitution, in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current gene therapy protocols for HIV infection use transfection or murine retrovirus mediated transfer of antiviral genes into CD4+ T cells or CD34+ progenitor cells ex vivo, followed by infusion of the gene altered cells into autologous or syngeneic/allogeneic recipients. While these studies are essential for safety and feasibility testing, several limitations remain: long-term reconstitution of the immune system is not effected for lack of access to the macrophage reservoir or the pluripotent stem cell population, which is usually quiescent, and ex vivo manipulation of the target cells will be too expensive and impractical for global application. In these regards, the lentivirus-specific biologic properties of the HIVs, which underlie their pathogenetic mechanisms, are also advantageous as vectors for gene therapy. The ability of HIV to specifically target CD4+ cells, as well as non-cycling cells, makes it a promising candidate for in vivo gene transfer vector on one hand, and for transduction of non-cycling stem cells on the other. Here we report the use of replication-defective vectors and stable vector packaging cell lines derived from both HIV-1 and HIV-2. Both HIV envelopes and vesicular stomatitis virus glycoprotein G were effective in mediating high-titer gene transfer, and an HIV-2 vector could be cross-packaged by HIV-1. Both HIV-1 and HIV-2 vectors were able to transduce primary human macrophages, a property not shared by murine retroviruses. Vesicular stomatitis virus glycoprotein G-pseudotyped HIV vectors have the potential to mediate gene transfer into non-cycling hematopoietic stem cells. If so, HIV or other lentivirus-based vectors will have applications beyond HIV infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable mammalian cell lines harboring a synthetic bovine opsin gene have been derived from the suspension-adapted HEK293 cell line. The opsin gene is under the control of the immediate-early cytomegalovirus promoter/enhancer in an expression vector that also contains a selectable marker (Neo) governed by a relatively weak promoter. The cell lines expressing the opsin gene at high levels are selected by growth in the presence of high concentrations of the antibiotic geneticin. Under the conditions used for cell growth in suspension, opsin is produced at saturated culture levels of more than 2 mg/liter. After reconstitution with 11-cis-retinal, rhodopsin is purified to homogeneity in a single step by immunoaffinity column chromatography. Rhodopsin thus prepared (> 90% recovery at concentrations of up to 15 microM) is indistinguishable from rhodopsin purified from bovine rod outer segments by the following criteria: (i) UV/Vis absorption spectra in the dark and after photobleaching and the rate of metarhodopsin II decay, (ii) initial rates of transducin activation, and (iii) the rate of phosphorylation by rhodopsin kinase. Although mammalian cell opsin migrates slower than rod outer segment opsin on SDS/polyacrylamide gels, presumably due to a different N-glycosylation pattern, their mobilities after deglycosylation are identical. This method has enabled the preparation of several site-specific mutants of bovine opsin in comparable amounts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleosomes, the basic structural elements of chromosomes, consist of 146 bp of DNA coiled around an octamer of histone proteins, and their presence can strongly influence gene expression. Considerations of the anisotropic flexibility of nucleotide triplets containing 3 cytosines or guanines suggested that a [5'(G/C)3 NN3']n motif might resist wrapping around a histone octamer. To test this, DNAs were constructed containing a 5'-CCGNN-3' pentanucleotide repeat with the Ns varied. Using in vitro nucleosome reconstitution and electron microscopy, a plasmid with 48 contiguous CCGNN repeats strongly excluded nucleosomes in the repeat region. Competitive reconstitution gel retardation experiments using DNA fragments containing 12, 24, or 48 CCGNN repeats showed that the propensity to exclude nucleosomes increased with the length of the repeat. Analysis showed that a 268-bp DNA containing a (CCGNN)48 block is 4.9 +/- 0.6-fold less efficient in nucleosome assembly than a similar length pUC19 fragment and approximately 78-fold less efficient than a similar length (CTG)n sequence, based on results from previous studies. Computer searches against the GenBank database for matches with a [(G/C)3NN]48 sequence revealed numerous examples that frequently were present in the control regions of "TATA-less" genes, including the human ETS-2 and human dihydrofolate reductase genes. In both cases the (G/C)3NN repeat, present in the promoter region, co-maps with loci previously shown to be nuclease hypersensitive sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The leptin receptor (OB-R) is a single membrane-spanning protein that mediates the weight regulatory effects of leptin (OB protein). The mutant allele (db) of the OB-R gene encodes a protein with a truncated cytoplasmic domain that is predicted to be functionally inactive. Several mRNA splice variants encoding OB-Rs with different length cytoplasmic domains have been detected in various tissues. Here we demonstrate that the full-length OB-R (predominantly expressed in the hypothalamus), but not a major naturally occurring truncated form or a mutant from found in db/db mice, can mediate activation of signal transducer and activator of transcription (STAT) proteins and stimulate transcription through interleukin 6 responsive gene elements. Reconstitution experiments suggest that, although OB-R mediates intracellular signals with a specificity similar to interleukin 6-type cytokine receptors, signaling appears to be independent of the gp130 signal transducing component of the interleukin 6-type cytokine receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The p53 mutant, 143ala, was translated in vitro in either rabbit reticulocyte lysate (RRL) or wheat germ extract (WGE). In RRL, p53-143ala protein of both mutant and wild-type conformation, as detected immunologically with conformation-specific antibodies, was translated. The chaperone protein HSP90, present in RRL, was found to coprecipitate only with the mutated conformation of p53. Geldanamycin, shown previously to bind to HSP90 and destabilize its association with other proteins, decreased the amount of immunologically detectable mutated p53 and increased the amount of detectable wild-type protein, without affecting the total translation of p53. When translated in WGE, known to contain functionally deficient HSP90, p53-143ala produced p53 protein, which was not recognized by a mutated conformation-specific antibody. In contrast, the synthesis of conformationally detectable wild-type p53 in this system was not compromised. Reconstitution of HSP90 function in WGE permitted synthesis of conformationally detectable mutated p53, and this was abrogated by geldanamycin. Finally, when p53-143ala was stably tansfected into yeast engineered to be defective for HSP90 function, conformational recognition of mutated p53 was impaired. When stable transfectants of p53-143ala were prepared in yeast expressing wild-type HSP90, conformational recognition of mutated p53 was antagonized by macbecin I, a geldanamycin analog also known to bind HSP90. Taken together, these data demonstrate a role for HSP90 in the achievement and/or stabilization of the mutated conformation of p53-143ala. Furthermore, we show that the mutated conformation of p53 can be pharmacologically antagonized by drugs targeting HSP90.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MRL/MP-+/+ (MRL/+) mice develop pancreatitis and sialoadenitis after they reach 7 months of age. Conventional bone marrow transplantation has been found to be ineffective in the treatment of these forms of apparent autoimmune disease. Old MRL/+ mice show a dramatic thymic involution with age. Hematolymphoid reconstitution is incomplete when fetal liver cells (as a source of hemopoietic stem cells) plus fetal bone (FB; which is used to recruit stromal cells) are transplanted from immunologically normal C57BL/6 donor mice to MRL/+ female recipients. Embryonic thymus from allogeneic C57BL/6 donors was therefore engrafted along with either bone marrow or fetal hematopoietic cells (FHCs) plus fragments of adult or fetal bone. More than seventy percent of old MRL/+ mice (> 7 months) that had been given a fetal thymus (FT) transplant plus either bone marrow or FHCs and also bone fragments survived more than 100 days after treatment. The mice that received FHCs, FB, plus FT from allogeneic donors developed normal T cell and B cell functions. Serum amylase levels decreased in these mice whereas they increased in the mice that received FHCs and FB but not FT. The pancreatitis and sialoadenitis already present at the time of transplantations were fully corrected according to histological analysis by transplants of allogeneic FHCs, FB and FT in the MRL/+ mice. These findings are taken as an experimental indication that perhaps stem cell transplants along with FT grafts might represent a useful strategy for treatment of autoimmune diseases in aged humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reconstitutable apoprotein of Crotalus adamanteus L-amino acid oxidase was prepared using hydrophobic interaction chromatography. After reconstitution with flavin adenine dinucleotide, the resulting protein was inactive, with a perturbed conformation of the flavin binding site. Subsequently, a series of cosolvent-dependent compact intermediates was identified. The nearly complete activation of the reconstituted apoprotein and the restoration of its native flavin binding site was achieved in the presence of 50% glycerol. We provide evidence that in addition to a merely stabilizing effect of glycerol on native proteins, glycerol can also have a restorative effect on their compact equilibrium intermediates, and we suggest the hydrophobic effect as a dominating force in this in vitro-assisted restorative process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the fission yeast, Schizosaccharomyces pombe, tolerance to high sodium and lithium concentrations requires the functioning of the sod2, Na+/H+ antiporter. We have directly measured the activity of this antiporter and demonstrated reconstitution of the activity in gene deletion strains. In addition, we have shown that it can be transferred to, and its antiporter activity detected in, the budding yeast, Saccharomyces cerevisiae, where it also confers sodium and lithium tolerance. Proton flux through the S. pombe Na+/H+ antiporter was directly measured using microphysiometry. The direction of transmembrane proton flux mediated by this antiporter was reversible, with protons being imported or exported in response to the external concentration of sodium. This bidirectional activity was also detected in S. cerevisiae strains expressing sod2 and expression of this gene complemented the sodium and lithium sensitivity resulting from inactivation of the ENA1/PMR2 encoded Na+-exporting ATPases. This suggests that antiporters or sodium pumps can be utilized interchangeably by S. cerevisiae to regulate internal sodium concentration. Potent inhibitors of mammalian Na+/H+ exchangers were found to have no effect on sod2 activity. The proton flux mediated by sod2 was also found to be unaffected by perturbation of membrane potential or the plasma membrane proton gradient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the kinetics of the oxygen reaction of the fully reduced quinol oxidase, cytochrome bo3, using flow-flash and stopped flow techniques. This enzyme belongs to the heme-copper oxidase family but lacks the CuA center of the cytochrome c oxidases. Depending on the isolation procedure, the kinetics are found to be either nearly monophasic and very different from those of cytochrome c oxidase or multiphasic and quite similar to cytochrome c oxidase. The multiphasic kinetics in cytochrome c oxidase can largely be attributed to the presence Of CuA as the donor of a fourth electron, which rereduces the originally oxidized low-spin heme and completes the reduction of O2 to water. Monophasic kinetics would thus be expected, a priori, for cytochrome bo3 since it lacks the CuA center, and in this case we show that the oxygen reaction is incomplete and ends with the ferryl intermediate. Multiphasic kinetics thus suggest the presence of an extra electron donor (analogous to CuA). We observe such kinetics exclusively with cytochrome bo3 that contains a single equivalent of bound ubiquinone-8, whereas we find no bound ubiquinone in an enzyme exhibiting monophasic kinetics. Reconstitution with ubiquinone-8 converts the reaction kinetics from monophasic to multiphasic. We conclude that a single bound ubiquinone molecule in cytochrome bo3 is capable of fast rereduction of heme b and that the reaction with O2 is quite similar in quinol and cytochrome c oxidases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All animal DNA viruses except pox virus utilize the cell nucleus as the site for virus reproduction. Yet, a critical viral infection process, nuclear targeting of the viral genome, is poorly understood. The role of capsid proteins in nuclear targeting of simian virus 40 (SV40) DNA, which is assessed by the nuclear accumulation of large tumor (T) antigen, the initial sign of the infectious process, was tested by two independent approaches: antibody interception experiments and reconstitution experiments. When antibody against viral capsid protein Vp1 or Vp3 was introduced into the cytoplasm, the nuclear accumulation of T antigen was not observed in cells either infected or cytoplasmically injected with virion. Nuclearly introduced anti-Vp3 IgG also showed the inhibitory effect. In the reconstitution experiments, SV40 DNA was allowed to interact with protein components of the virus, either empty particles or histones, and the resulting complexes were tested for the capability of protein components to target the DNA to the nucleus from cytoplasm as effectively as the targeting of DNA in the mature virion. In cells injected with empty particle-DNA, but not in minichromosome-injected cells, T antigen was observed as effectively as in SV40-injected cells. These results demonstrate that SV40 capsid proteins can facilitate transport of SV40 DNA into the nucleus and indicate that Vp3, one of the capsid proteins, accompanies SV40 DNA as it enters the nucleus during virus infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6-chloroethylguanine DNA lesions. Using a simplified recombinant retroviral vector expressing the human MGMT gene under control of the phosphoglycerate kinase promoter (PGK-MGMT) we increased the capacity of murine bone marrow-derived cells to repair CNU-induced DNA damage. Stable reconstitution of mouse bone marrow with genetically modified, MGMT-expressing hematopoietic stem cells conferred considerable resistance to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a CNU commonly used for chemotherapy. Bone marrow harvested from mice transplanted with PGK-MGMT-transduced cells showed extensive in vitro BCNU resistance. Moreover, MGMT expression in mouse bone marrow conferred in vivo resistance to BCNU-induced pancytopenia and significantly reduced BCNU-induced mortality due to bone marrow hypoplasia. These data demonstrate that increased DNA alkylation repair in primitive hematopoietic stem cells confers multilineage protection from the myelosuppressive effects of BCNU and suggest a possible approach to protecting cancer patients from CNU chemotherapy-related toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.