87 resultados para Rearrangement.
Resumo:
V(D)J recombination generates a remarkably diverse repertoire of antigen receptors through the rearrangement of germline DNA. Terminal deoxynucleotidyl transferase (TdT), a polymerase that adds random nucleotides (N regions) to recombination junctions, is a key enzyme contributing to this diversity. The current model is that TdT adds N regions during V(D)J recombination by random collision with the DNA ends, without a dependence on other cellular factors. We previously demonstrated, however, that V(D)J junctions from Ku80-deficient mice unexpectedly lack N regions, although the mechanism responsible for this effect remains undefined in the mouse system. One possibility is that junctions are formed in these mice during a stage in development when TdT is not expressed. Alternatively, Ku80 may be required for the expression, nuclear localization or enzymatic activity of TdT. Here we show that V(D)J junctions isolated from Ku80-deficient fibroblasts are devoid of N regions, as were junctions in Ku80-deficient mice. In these cells TdT protein is abundant at the time of recombination, localizes properly to the nucleus and is enzymatically active. Based on these data, we propose that TdT does not add to recombination junctions through random collision but is actively recruited to the V(D)J recombinase complex by Ku80.
Resumo:
The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc finger structures present in NC. Although both NC and SSHS NC facilitate annealing of complementary strands through electrostatic attraction, only NC destabilizes the helical form of DNA and reduces the cooperativity of the helix-coil transition. In particular, we find that the helix-coil transition free energy at room temperature is significantly reduced in the presence of NC. Thus, upon NC binding, it is likely that thermodynamic fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations to find the lowest energy state. The reduced cooperativity allows these fluctuations to occur in the middle of complex double-stranded structures. The reduced stability and cooperativity, coupled with the electrostatic attraction generated by the high charge density of NC, is responsible for the nucleic acid chaperone activity of this protein.
Resumo:
The maize genome is replete with chromosomal duplications and repetitive DNA. The duplications resulted from an ancient polyploid event that occurred over 11 million years ago. Based on DNA sequence data, the polyploid event occurred after the divergence between sorghum and maize, and hence the polyploid event explains some of the difference in DNA content between these two species. Genomic rearrangement and diploidization followed the polyploid event. Most of the repetitive DNA in the maize genome is retrotransposable elements, and they comprise 50% of the genome. Retrotransposon multiplication has been relatively recent—within the last 5–6 million years—suggesting that the proliferation of retrotransposons has also contributed to differences in DNA content between sorghum and maize. There are still unanswered questions about repetitive DNA, including the distribution of repetitive DNA throughout the genome, the relative impacts of retrotransposons and chromosomal duplication in plant genome evolution, and the hypothesized correlation of duplication events with transposition. Population genetic processes also affect the evolution of genomes. We discuss how centromeric genes should, in theory, contain less genetic diversity than noncentromeric genes. In addition, studies of diversity in the wild relatives of maize indicate that different genes have different histories and also show that domestication and intensive breeding have had heterogeneous effects on genetic diversity across genes.
Resumo:
In 1950, G. Ledyard Stebbins devoted two chapters of his book Variation and Evolution in Plants (Columbia Univ. Press, New York) to polyploidy, one on occurrence and nature and one on distribution and significance. Fifty years later, many of the questions Stebbins posed have not been answered, and many new questions have arisen. In this paper, we review some of the genetic attributes of polyploids that have been suggested to account for the tremendous success of polyploid plants. Based on a limited number of studies, we conclude: (i) Polyploids, both individuals and populations, generally maintain higher levels of heterozygosity than do their diploid progenitors. (ii) Polyploids exhibit less inbreeding depression than do their diploid parents and can therefore tolerate higher levels of selfing; polyploid ferns indeed have higher levels of selfing than do their diploid parents, but polyploid angiosperms do not differ in outcrossing rates from their diploid parents. (iii) Most polyploid species are polyphyletic, having formed recurrently from genetically different diploid parents. This mode of formation incorporates genetic diversity from multiple progenitor populations into the polyploid “species”; thus, genetic diversity in polyploid species is much higher than expected by models of polyploid formation involving a single origin. (iv) Genome rearrangement may be a common attribute of polyploids, based on evidence from genome in situ hybridization (GISH), restriction fragment length polymorphism (RFLP) analysis, and chromosome mapping. (v) Several groups of plants may be ancient polyploids, with large regions of homologous DNA. These duplicated genes and genomes can undergo divergent evolution and evolve new functions. These genetic and genomic attributes of polyploids may have both biochemical and ecological benefits that contribute to the success of polyploids in nature.
Resumo:
Cell–cell recognition often requires the formation of a highly organized pattern of receptor proteins (a synapse) in the intercellular junction. Recent experiments [e.g., Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. (1998) Nature (London) 395, 82–86; Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227; and Davis, D. M., Chiu, I., Fassett, M., Cohen, G. B., Mandelboim, O. & Strominger, J. L. (1999) Proc. Natl. Acad. Sci. USA 96, 15062–15067] vividly demonstrate a complex evolution of cell shape and spatial receptor–ligand patterns (several microns in size) in the intercellular junction during immunological synapse formation. The current view is that this dynamic rearrangement of proteins into organized supramolecular activation clusters is driven primarily by active cytoskeletal processes [e.g., Dustin, M. L. & Cooper, J. A. (2000) Nat. Immunol. 1, 23–29; and Wulfing, C. & Davis, M. M. (1998) Science 282, 2266–2269]. Here, aided by a quantitative analysis of the relevant physico-chemical processes, we demonstrate that the essential characteristics of synaptic patterns observed in living cells can result from spontaneous self-assembly processes. Active cellular interventions are superimposed on these self-organizing tendencies and may also serve to regulate the spontaneous processes. We find that the protein binding/dissociation characteristics, protein mobilities, and membrane constraints measured in the cellular environment are delicately balanced such that the length and time scales of spontaneously evolving patterns are in near-quantitative agreement with observations for synapse formation between T cells and supported membranes [Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227]. The model we present provides a common way of analyzing immunological synapse formation in disparate systems (e.g., T cell/antigen-presenting cell junctions with different MHC-peptides, natural killer cells, etc.).
Resumo:
The extremely slow α-helix/β-sheet transition of proteins is a crucial step in amylogenic diseases and represents an internal rearrangement of local contacts in an already folded protein. These internal structural rearrangements within an already folded protein are a critical aspect of biological action and are a product of conformational flow along unknown metastable local minima of the energy landscape of the compact protein. We use a diffusional IR mixer with time-resolved Fourier transform IR spectroscopy capable of 400-μs time resolution to show that the trifluoroethanol driven β-sheet to α-helix transition of β-lactoglobulin proceeds via a compact β-sheet intermediate with a lifetime of 7 ms, small compared with the overall folding time of β-lactoglobulin.
Resumo:
The leaves and especially the roots of chicory (Cichorium intybus L.) contain high concentrations of bitter sesquiterpene lactones such as the guianolides lactupicrin, lactucin, and 8-deoxylactucin. Eudesmanolides and germacranolides are present in smaller amounts. Their postulated biosynthesis through the mevalonate-farnesyl diphosphate-germacradiene pathway has now been confirmed by the isolation of a (+)-germacrene A synthase from chicory roots. This sesquiterpene cyclase was purified 200-fold using a combination of anion-exchange and dye-ligand chromatography. It has a Km value of 6.6 μm, an estimated molecular mass of 54 kD, and a (broad) pH optimum around 6.7. Germacrene A, the enzymatic product, proved to be much more stable than reported in literature. Its heat-induced Cope rearrangement into (−)-β-elemene was utilized to determine its absolute configuration on an enantioselective gas chromatography column. To our knowledge, until now in sesquiterpene biosynthesis, germacrene A has only been reported as an (postulated) enzyme-bound intermediate, which, instead of being released, is subjected to additional cyclization(s) by the same enzyme that generated it from farnesyl diphosphate. However, in chicory germacrene A is released from the sesquiterpene cyclase. Apparently, subsequent oxidations and/or glucosylation of the germacrane skeleton, together with a germacrene cyclase, determine whether guaiane- or eudesmane-type sesquiterpene lactones are produced.
Resumo:
We have cloned a fusion partner of the MLL gene at 11q23 and identified it as the gene encoding the human formin-binding protein 17, FBP17. It maps to chromosome 9q34 centromeric to ABL. The gene fusion results from a complex chromosome rearrangement that was resolved by fluorescence in situ hybridization with various probes on chromosomes 9 and 11 as an ins(11;9)(q23;q34)inv(11)(q13q23). The rearrangement resulted in a 5′-MLL/FBP17-3′ fusion mRNA. We retrovirally transduced murine-myeloid progenitor cells with MLL/FBP17 to test its transforming ability. In contrast to MLL/ENL, MLL/ELL and other MLL-fusion genes, MLL/FBP17 did not give a positive readout in a serial replating assay. Therefore, we assume that additional cooperating genetic abnormalities might be needed to establish a full malignant phenotype. FBP17 consists of a C-terminal Src homology 3 domain and an N-terminal region that is homologous to the cell division cycle protein, cdc15, a regulator of the actin cytoskeleton in Schizosaccharomyces pombe. Both domains are separated by a consensus Rho-binding motif that has been identified in different Rho-interaction partners such as Rhotekin and Rhophilin. We evaluated whether FBP17 and members of the Rho family interact in vivo with a yeast two-hybrid assay. None of the various Rho proteins tested, however, interacted with FBP17. We screened a human kidney library and identified a sorting nexin, SNX2, as a protein interaction partner of FBP17. These data provide a link between the epidermal growth factor receptor pathway and an MLL fusion protein.
Resumo:
Transmembrane signaling by bacterial chemoreceptors is thought to involve relative movement among the four transmembrane helices of the homodimer. We assayed that movement by measuring effects of ligand occupancy on rates of oxidative cross-linking between cysteines introduced into neighboring helices of the transmembrane domain of chemoreceptor Trg from Escherichia coli. Measurements were done on chemoreceptors in their native environment, intact cells that were motile and chemotactically responsive. Receptor occupancy did not appear to cause drastic rearrangement of the four-helix structure since, among 67 cysteine pairs tested, the same 19 exhibited oxidative cross-linking in the presence or absence of saturating chemoattractant. However, occupancy did cause subtle changes that were detected as effects on rates of cross-linking. Among the seven disulfides appropriate for measurements of initial rates of formation, ligand occupancy had significant and different effects on all three cross-links that connected the two helices within a subunit but had minimal effects on the four that spanned the packing interface between subunits. This constitutes direct evidence that the conformational change of transmembrane signaling involves significant movement within a subunit and minimal movement between subunits, a pattern deduced from several previous studies and now documented directly. Among possible modes of movement between the two helices of a subunit, axial sliding of one helix relative to the other was the conformational change that best accounted for the observed effects on cross-linking.
Resumo:
Molecular analysis of complex modular structures, such as promoter regions or multi-domain proteins, often requires the creation of families of experimental DNA constructs having altered composition, order, or spacing of individual modules. Generally, creation of every individual construct of such a family uses a specific combination of restriction sites. However, convenient sites are not always available and the alternatives, such as chemical resynthesis of the experimental constructs or engineering of different restriction sites onto the ends of DNA fragments, are costly and time consuming. A general cloning strategy (nucleic acid ordered assembly with directionality, NOMAD; WWW resource locator http:@Lmb1.bios.uic.edu/NOMAD/NOMAD.htm l) is proposed that overcomes these limitations. Use of NOMAD ensures that the production of experimental constructs is no longer the rate-limiting step in applications that require combinatorial rearrangement of DNA fragments. NOMAD manipulates DNA fragments in the form of "modules" having a standardized cohesive end structure. Specially designed "assembly vectors" allow for sequential and directional insertion of any number of modules in an arbitrary predetermined order, using the ability of type IIS restriction enzymes to cut DNA outside of their recognition sequences. Studies of regulatory regions in DNA, such as promoters, replication origins, and RNA processing signals, construction of chimeric proteins, and creation of new cloning vehicles, are among the applications that will benefit from using NOMAD.
Resumo:
The rearrangement of antibody and T-cell receptor gene segments is indispensable to the vertebrate immune response. All extant jawed vertebrates can rearrange these gene segments. This ability is conferred by the recombination activating genes I and II (RAG I and RAG II). To elucidate their origin and function, the cDNA encoding RAG I from a member of the most ancient class of extant gnathostomes, the Carcharhine sharks, was characterized. Homology domains identified within shark RAG I prompted sequence comparison analyses that suggested similarity of the RAG I and II genes, respectively, to the integrase family genes and integration host factor genes of the bacterial site-specific recombination system. Thus, the apparent explosive evolution (or "big bang") of the ancestral immune system may have been initiated by a transfer of microbial site-specific recombinases.
Resumo:
Chimeric mice in which lymphocytes are deficient in the Syk tyrosine kinase have been created. Compared with Syk-positive controls, mice with Syk -/- lymphocytes display substantial depletion of intraepithelial gamma delta T cells in the skin and gut, with developmental arrest occurring after antigen receptor gene rearrangement. In this dependence on Syk, subsets of intraepithelial gamma delta T cells are similar to B cells, but distinct from splenic gamma delta T cells that develop and expand in Syk-deficient mice. The characteristic associations of certain T-cell receptor V gamma/V delta gene rearrangements with specific epithelia are also disrupted by Syk deficiency.
Resumo:
Delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) promotes an allylic rearrangement involving intramolecular proton transfer via a dienolic intermediate. This enzyme enhances the catalytic rate by a factor of 10(10). Two residues, Tyr-14, the general acid that polarizes the steroid 3-carbonyl group and facilitates enolization, and Asp-38 the general base that abstracts and transfers the 4 beta-proton to the 6 beta-position, contribute 10(4.7) and 10(5.6) to the rate increase, respectively. A major mechanistic enigma is the huge disparity between the pKa values of the catalytic groups and their targets. Upon binding of an analog of the dienolate intermediate to isomerase, proton NMR detects a highly deshielded resonance at 18.15 ppm in proximity to aromatic protons, and with a 3-fold preference for protium over deuterium (fractionation factor, phi = 0.34), consistent with formation of a short, strong (low-barrier) hydrogen bond to Tyr-14. The strength of this hydrogen bond is estimated to be at least 7.1 kcal/mol. This bond is relatively inaccessible to bulk solvent and is pH insensitive. Low-barrier hydrogen bonding of Tyr-14 to the intermediate, in conjunction with the previously demonstrated tunneling contribution to the proton transfer by Asp-38, provide a plausible and quantitative explanation for the high catalytic power of this isomerase.
Resumo:
The folding mechanism of a 125-bead heteropolymer model for proteins is investigated with Monte Carlo simulations on a cubic lattice. Sequences that do and do not fold in a reasonable time are compared. The overall folding behavior is found to be more complex than that of models for smaller proteins. Folding begins with a rapid collapse followed by a slow search through the semi-compact globule for a sequence-dependent stable core with about 30 out of 176 native contacts which serves as the transition state for folding to a near-native structure. Efficient search for the core is dependent on structural features of the native state. Sequences that fold have large amounts of stable, cooperative structure that is accessible through short-range initiation sites, such as those in anti-parallel sheets connected by turns. Before folding is completed, the system can encounter a second bottleneck, involving the condensation and rearrangement of surface residues. Overly stable local structure of the surface residues slows this stage of the folding process. The relation of the results from the 125-mer model studies to the folding of real proteins is discussed.
Resumo:
To assess the role of transcriptional enhancers in regulating accessibility of the T-cell receptor beta-chain (TCRbeta) locus, we generated embryonic stem cell lines in which a single allelic copy of the endogenous TCRbeta enhancer (Ebeta) was either deleted or replaced with the immunoglobulin heavy-chain intronic enhancer. We assayed the effects of these mutations on activation of the TCRbeta locus in normal T- and B-lineage cells by RAG-2 (recombination-activating gene 2)-deficient blastocyst complementation. We found that Ebeta is required for rearrangement and germ-line transcription of the TCRbeta locus in T-lineage cells. In the absence of Ebeta, the heavy-chain intronic enhancer partially supported joining region beta-chain rearrangement in T- but not in B-lineage cells. However, ability of the heavy-chain intronic enhancer to induce rearrangements was blocked by linkage to an expressed neomycin-resistance gene (neo(r)). These results demonstrate a critical role for Ebeta in promoting accessibility of the TCRbeta locus and suggest that additional negative elements may cooperate to further modulate this process.