93 resultados para NICOTIANA TABACUM BEL-W3


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tobacco (Nicotiana tabacum) cultivar Xanthi-nc (genotype NN) produces high levels of salicylic acid (SA) after inoculation with the tobacco mosaic virus (TMV). Gaseous methyl salicylate (MeSA), a major volatile produced in TMV-inoculated tobacco plants, was recently shown to be an airborne defense signal. Using an assay developed to measure the MeSA present in tissue, we have shown that in TMV-inoculated tobacco plants the level of MeSA increases dramatically, paralleling increases in SA. MeSA accumulation was also observed in upper, noninoculated leaves. In TMV-inoculated tobacco shifted from 32 to 24°C, the MeSA concentration increased from nondetectable levels to 2318 ng/g fresh weight 12 h after the temperature shift, but subsequently decreased with the onset of the hypersensitive response. Similar results were observed in plants inoculated with Pseudomonas syringae pathovar phaseolicola, in which MeSA levels were highest just before the hypersensitive response-induced tissue desiccation. Transgenic NahG plants unable to accumulate SA also did not accumulate MeSA after TMV inoculation, and did not show increased resistance to TMV following MeSA treatment. Based on the spatial and temporal kinetics of its accumulation, we conclude that tissue MeSA may play a role similar to that of volatile MeSA in the pathogen-induced defense response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, we reported that transformation of tobacco (Nicotiana tabacum L.) with a vector containing a potato cytosolic pyruvate kinase (PKc) cDNA generated two plant lines specifically lacking leaf PKc (PKc−) as a result of co-suppression. PKc deficiency in these primary transformants did not appear to alter plant development, although root growth was not examined. Here we report a striking reduction in root growth of homozygous progeny of both PKc− lines throughout development under moderate (600 μE m−2 s−1) or low (100 μE m−2 s−1) light intensities. When both PKc− lines were cultivated under low light, shoot and flower development were also delayed and leaf indentations were apparent. Leaf PK activity in the transformants was significantly decreased at all time points examined, whereas root activities were unaffected. Polypeptides corresponding to PKc were undetectable on immunoblots of PKc− leaf extracts, except in 6-week-old low-light-grown PKc− plants, in which leaf PKc expression appeared to be greatly reduced. The metabolic implications of the kinetic characteristics of partially purified PKc from wild-type tobacco leaves are discussed. Overall, the results suggest that leaf PKc deficiency leads to a perturbation in source-sink relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al toxicity is a major problem that limits crop productivity on acid soils. It has been suggested that Al toxicity is linked to changes in cellular Ca homeostasis and the blockage of plasma membrane Ca2+-permeable channels. BY-2 suspension-cultured cells of tobacco (Nicotiana tabacum L.) exhibit rapid cell expansion that is sensitive to Al. Therefore, the effect of Al on changes in cytoplasmic free Ca concentration ([Ca2+]cyt) was followed in BY-2 cells to assess whether Al perturbed cellular Ca homeostasis. Al exposure resulted in a prolonged reduction in [Ca2+]cyt and inhibition of growth that was similar to the effect of the Ca2+ channel blocker La3+ and the Ca2+ chelator ethyleneglycol-bis(β-aminoethyl ether)-N,N′-tetraacetic acid. The Ca2+ channel blockers verapamil and nifedipine did not induce a decrease in [Ca2+]cyt in these cells and also failed to inhibit growth. Al and La3+, but not verapamil or nifedipine, reduced the rate of Mn2+ quenching of Indo-1 fluorescence, which is consistent with the blockage of Ca2+- and Mn2+-permeable channels. These results suggest that Al may act to block Ca2+ channels at the plasma membrane of plant cells and this action may play a crucial role in the phytotoxic activity of the Al ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transgenic tobacco (Nicotiana tabacum cv. Turkish Samsun NN) plants expressing a truncated replicase gene sequence from RNA-2 of strain Fny of cucumber mosaic virus (CMV) are resistant to systemic CMV disease. This is due to suppression of virus replication and cell-to-cell movement in the inoculated leaves of these plants. In this study, microinjection protocols were used to directly examine cell-to-cell trafficking of CMV viral RNA in these resistant plants. CMV RNA fluorescently labeled with the nucleotide-specific TOTO-1 iodide dye, when coinjected with unlabeled CMV 3a movement protein (MP), moved rapidly into the surrounding mesophyll cells in mature tobacco leaves of vector control and untransformed plants. Such trafficking required the presence of functional CMV 3a MP. In contrast, coinjection of CMV 3a MP and CMV TOTO-RNA failed to move in transgenic resistant plants expressing the CMV truncated replicase gene. Furthermore, coinjection of 9.4-kDa fluorescein-conjugated dextran (F-dextran) along with unlabeled CMV 3a MP resulted in cell-to-cell movement of the F-dextran in control plants, but not in the transgenic plants. Similar results were obtained with viral RNA when the 30-kDa MP of tobacco mosaic virus (TMV) was coinjected with TMV TOTO-RNA into replicase-resistant transgenic tobacco expressing the 54-kDa gene sequence of TMV. However, in these transgenic plants, the TMV-MP was still capable of mediating cell-to-cell movement of itself and the 9.4-kDa F-dextran. These results indicate that an inhibition of cell-to-cell viral RNA trafficking is correlated with replicase-mediated resistance. This raises the possibility that the RNA-2 product is potentially involved in the regulation of cell-to-cell movement of viral infectious material during CMV replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To fully understand vascular transport of plant viruses, the viral and host proteins, their structures and functions, and the specific vascular cells in which these factors function must be determined. We report here on the ability of various cDNA-derived coat protein (CP) mutants of tobacco mosaic virus (TMV) to invade vascular cells in minor veins of Nicotiana tabacum L. cv. Xanthi nn. The mutant viruses we studied, TMV CP-O, U1mCP15-17, and SNC015, respectively, encode a CP from a different tobamovirus (i.e., from odontoglossum ringspot virus) resulting in the formation of non-native capsids, a mutant CP that accumulates in aggregates but does not encapsidate the viral RNA, or no CP. TMV CP-O is impaired in phloem-dependent movement, whereas U1mCP15-17 and SNC015 do not accumulate by phloem-dependent movement. In developmentally-defined studies using immunocytochemical analyses we determined that all of these mutants invaded vascular parenchyma cells within minor veins in inoculated leaves. In addition, we determined that the CPs of TMV CP-O and U1mCP15-17 were present in companion (C) cells of minor veins in inoculated leaves, although more rarely than CP of wild-type virus. These results indicate that the movement of TMV into minor veins does not require the CP, and an encapsidation-competent CP is not required for, but may increase the efficiency of, movement into the conducting complex of the phloem (i.e., the C cell/sieve element complex). Also, a host factor(s) functions at or beyond the C cell/sieve element interface with other cells to allow efficient phloem-dependent accumulation of TMV CP-O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclic terpenes and terpenoids are found throughout nature. They comprise an especially important class of compounds from plants that mediate plant- environment interactions, and they serve as pharmaceutical agents with antimicrobial and anti-tumor activities. Molecular comparisons of several terpene cyclases, the key enzymes responsible for the multistep cyclization of C10, C15, and C20 allylic diphosphate substrates, have revealed a striking level of sequence similarity and conservation of exon position and size within the genes. Functional domains responsible for a terminal enzymatic step were identified by swapping regions approximating exons between a Nicotiana tabacum 5-epi-aristolochene synthase (TEAS) gene and a Hyoscyamus muticus vetispiradiene synthase (HVS) gene and by characterization of the resulting chimeric enzymes expressed in bacteria. While exon 4 of the TEAS gene conferred specificity for the predominant reaction products of the tobacco enzyme, exon 6 of the HVS gene conferred specificity for the predominant reaction products of the Hyoscyamus enzyme. Combining these two functional domains of the TEAS and HVS genes resulted in a novel enzyme capable of synthesizing reaction products reflective of both parent enzymes. The relative ratio of the TEAS and HVS reaction products was also influenced by the source of exon 5 present in the new chimeric enzymes. The association of catalytic activities with conserved but separate exonic domains suggests a general means for generating additional novel terpene cyclases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of the jellyfish green fluorescent protein (GFP) in plants was analyzed by transient expression in protoplasts from Nicotiana tabacum, Arabidopsis thaliana, Hordeum vulgare, and Zea mays. Expression of GFP was only observed with a mutated cDNA, from which a recently described cryptic splice site had been removed. However, detectable levels of green fluorescence were only emitted from a small number of protoplasts. Therefore, other mutations in the GFP cDNA leading to single-amino acid exchanges in the chromophore region, which had been previously studied in Escherichia coli, were tested in order to improve the sensitivity of this marker protein. Of the mutations tested so far, the exchange of GFP amino acid tyrosine 66 to histidine (Y66H) led to detection of blue fluorescence in plant protoplasts, while the exchange of amino acid serine 65 to cysteine (S65C) and threonine (S65T) increased the intensity of green fluorescence drastically, thereby significantly raising the detection level for GFP. For GFP S65C, the detectable number of green fluorescing tobacco (BY-2) protoplasts was raised up to 19-fold, while the fluorimetricly determined fluorescence was raised by at least 2 orders of magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transmitting tissue-specific (TTS) protein is a pollen tube growth-promoting and attracting glycoprotein located in the stylar transmitting tissue extracellular matrix of the pistil of tobacco. The TTS protein backbones have a deduced molecular mass of about 28 kDa, whereas the glycosylated stylar TTS proteins have apparent molecular masses ranging between 50 and 100 kDa. TTS mRNAs and proteins are ectopically produced in transgenic tobacco plants that express either a cauliflower mosaic virus (CaMV) 35S promoter-TTS2 transgene or a CaMV 35S-promoter-NAG1 (NAG1 = Nicotiana tabacum Agamous gene) transgene. However, the patterns of TTS mRNA and protein accumulation and the quality of the TTS proteins produced are different in these two types of transgenic plants. In 35S-TTS transgenic plants, TTS mRNAs and proteins accumulate constitutively in vegetative and floral tissues. However, the ectopically expressed TTS proteins in these transgenic plants accumulate as underglycosylated protein species with apparent molecular masses between 30 and 50 kDa. This indicates that the capacity to produce highly glycosylated TTS proteins is restricted to the stylar transmitting tissue. In 35S-NAG transgenic plants, NAG1 mRNAs accumulate constitutively in vegetative and floral tissues, and TTS mRNAs are induced in the sepals of these plants. Moreover, highly glycosylated TTS proteins in the 50- to 100-kDa molecular mass range accumulate in the sepals of these transgenic, 35S-NAG plants. These results show that the tobacco NAGI gene, together with other yet unidentified regulatory factors, control the expression of TTS genes and the cellular capacity to glycosylate TTS proteins, which are normally expressed very late in the pistil developmental pathway and function in the final stage of floral development. The sepals in the transgenic 35S-NAG plants also support efficient pollen germination and tube growth, similar to what normally occurs in the pistil, and this ability correlates with the accumulation of the highest levels of the 50- to 100-kDa glycosylated TTS proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integration of viral DNA into the host nuclear genome, although not unusual in bacterial and animal systems, has surprisingly not been reported for plants. We have discovered geminvirus-related DNA (GRD) sequences, in the form of distinct sets of multiple direct repeats comprising three related repeat classes, situated in a unique locus in the Nicotiana tabacum (tobacco) nuclear genome. The organization of these sequences is similar or identical in eight different tobacco cultivars we have examined. DNA sequence analysis reveals that each repeat has sequences most resembling those of the New World geminiviral DNA replication origin plus the adjacent AL1 gene, encoding the viral replication protein. We believe these GRD sequences originated quite recently in Nicotiana evolution through integration of geminiviral DNA by some combination of the processes of illegitimate recombination, amplification, deletions, and rearrangements. These events must have occurred in plant tissue that was subsequently able to contribute to meristematic tissue yielding gametes. GRD may have been retained in tobacco by selection or by random fixation in a small evolving population. Although we cannot detect transcription of these sequences, this does not exclude the possibility that they may originally have been expressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ngrol genes (NgrolB, NgrolC, NgORF13, and NgORF14) that are similar in sequence to genes in the left transferred DNA (TL-DNA) of Agrobacterium rhizogenes have been found in the genome of untransformed plants of Nicotiana glauca. It has been suggested that a bacterial infection resulted in transformation of Ngrol genes early in the evolution of the genus Nicotiana. Although the corresponding four rol genes in TL-DNA provoked hairy-root syndrome in plants, present-day N. glauca and plants transformed with Ngrol genes did not exhibit this phenotype. Sequenced complementation analysis revealed that the NgrolB gene did not induce adventitious roots because it contained two point mutations. Single-base site-directed mutagenesis at these two positions restored the capacity for root induction to the NgrolB gene. When the NgrolB, with these two base substitutions, was positioned under the control of the cauliflower mosaic virus 35S promoter (P35S), transgenic tobacco plants exhibited morphological abnormalities that were not observed in P35s-RirolB plants. In contrast, the activity of the NgrolC gene may have been conserved after an ancient infection by bacteria. Discussed is the effect of the horizontal gene transfer of the Ngrol genes and mutations in the NgrolB gene on the phenotype of ancient plants during the evolution of N. glauca.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although S-locus RNases (S-RNases) determine the specificity of pollen rejection in self-incompatible (SI) solanaceous plants, they alone are not sufficient to cause S-allele-specific pollen rejection. To identify non-S-RNase sequences that are required for pollen rejection, a Nicotiana alata cDNA library was screened by differential hybridization. One clone, designated HT, hybridized strongly to RNA from N. alata styles but not to RNA from Nicotiana plumbaginifolia, a species known to lack one or more factors necessary for S-allele-specific pollen rejection. Sequence analysis revealed a 101-residue ORF including a putative secretion signal and an asparagine-rich domain near the C terminus. RNA blot analysis showed that the HT-transcript accumulates in the stigma and style before anthesis. The timing of HT-expression lags slightly behind SC10-RNase in SI N. alata SC10SC10 and is well correlated with the onset of S-allele-specific pollen rejection in the style. An antisense-HT construct was prepared to test for a role in pollen rejection. Transformed (N. plumbaginifolia × SI N. alata SC10SC10) hybrids with reduced levels of HT-protein continued to express SC10-RNase but failed to reject SC10-pollen. Control hybrids expressing both SC10-RNase and HT-protein showed a normal S-allele-specific pollen rejection response. We conclude that HT-protein is directly implicated in pollen rejection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abscisic acid (ABA) is a plant hormone involved in the control of a wide range of physiological processes, including adaptation to environmental stress and seed development. In higher plants ABA is a breakdown product of xanthophyll carotenoids (C40) via the C15 intermediate xanthoxin. The ABA2 gene of Nicotiana plumbaginifolia encodes zeaxanthin epoxidase, which catalyzes the conversion of zeaxanthin to violaxanthin. In this study we analyzed steady-state levels of ABA2 mRNA in N. plumbaginifolia. The ABA2 mRNA accumulated in all plant organs, but transcript levels were found to be higher in aerial parts (stems and leaves) than in roots and seeds. In leaves ABA2 mRNA accumulation displayed a day/night cycle; however, the ABA2 protein level remained constant. In roots no diurnal fluctuation in mRNA levels was observed. In seeds the ABA2 mRNA level peaked around the middle of development, when ABA content has been shown to increase in many species. In conditions of drought stress, ABA levels increased in both leaves and roots. A concomitant accumulation of ABA2 mRNA was observed in roots but not in leaves. These results are discussed in relation to the role of zeaxanthin epoxidase both in the xanthophyll cycle and in the synthesis of ABA precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollen tubes navigate the route from stigma to ovule with great accuracy, but the cues that guide them along this route are not known. We reproduced the environment on the stigma of Nicotiana alata by immersing pollen in stigma exudate or oil close to an interface with an aqueous medium. The growth of pollen in this culture system mimicked growth on stigmas: pollen grains hydrated and germinated, and pollen tubes grew toward the aqueous medium. The rate-limiting step in pollen germination was the movement of water through the surrounding exudate or oil. By elimination of other potential guidance cues, we conclude that the directional supply of water probably determined the axis of polarity of pollen tubes and resulted in growth toward the interface. We propose that a gradient of water in exudate is a guidance cue for pollen tubes on the stigma and that the composition of the exudate must be such that it is permeable enough for pollen hydration to occur but not so permeable that the supply of water becomes nondirectional. Pollen tube penetration of the stigma may be the most frequently occurring hydrotropic response of higher plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the regulation and expression of pyrimidine biosynthesis in plants, we have examined the effect of the metabolic inhibitor 5-fluoroorotic acid (FOA) on uridine-5′-monophosphate synthase (UMPSase) expression in cell cultures of Nicotiana plumbaginifolia. UMPSase is the rate-limiting step of pyrimidine biosynthesis in plants. Addition of FOA causes an up-regulation of UMPSase enzyme activity in cell cultures after a lag phase of several days. Western-blot analysis demonstrated that the up-regulation in enzyme activity was caused by increased expression of the UMPSase protein. Northern-blot analysis demonstrated a higher level of UMPSase mRNA in the FOA-induced tissues than in control tissues. Run-on transcriptional assays showed that the UMPSase gene was transcriptionally activated after FOA treatment. The mechanism of toxicity of FOA is through thymine starvation. We found that addition of thymine abrogated the FOA-mediated up-regulation of UMPSase. In addition, methotrexate and aminopterin, which affect thymine levels by inhibiting dihydrofolate reductase, also up-regulate UMPSase in N. plumbaginifolia cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endocytosis of the Flaviviridae viruses, hepatitis C virus, GB virus C/hepatitis G virus, and bovine viral diarrheal virus (BVDV) was shown to be mediated by low density lipoprotein (LDL) receptors on cultured cells by several lines of evidence: by the demonstration that endocytosis of these virus correlated with LDL receptor activity, by complete inhibition of detectable endocytosis by anti-LDL receptor antibody, by inhibition with anti-apolipoprotein E and -apolipoprotein B antibodies, by chemical methods abrogating lipoprotein/LDL receptor interactions, and by inhibition with the endocytosis inhibitor phenylarsine oxide. Confirmatory evidence was provided by the lack of detectable LDL receptor on cells known to be resistant to BVDV infection. Endocytosis via the LDL receptor was shown to be mediated by complexing of the virus to very low density lipoprotein or LDL but not high density lipoprotein. Studies using LDL receptor-deficient cells or a cytolytic BVDV system indicated that the LDL receptor may be the main but not exclusive means of cell entry of these viruses. Studies on other types of viruses indicated that this mechanism may not be exclusive to Flaviviridae but may be used by viruses that associate with lipoprotein in the blood. These findings provide evidence that the family of LDL receptors may serve as viral receptors.