70 resultados para Murine Leukemia-Virus


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The M78 protein of murine cytomegalovirus exhibits sequence features of a G protein-coupled receptor. It is synthesized with early kinetics, it becomes partially colocalized with Golgi markers, and it is incorporated into viral particles. We have constructed a viral substitution mutant, SMsubM78, which lacks most of the M78 ORF. The mutant produces a reduced yield in cultured 10.1 fibroblast and IC21 macrophage cell lines. The defect is multiplicity dependent and greater in the macrophage cell line. Consistent with its growth defect in cultured cells, the mutant exhibits reduced pathogenicity in mice, generating less infectious progeny than wild-type virus in all organs assayed. SMsubM78 fails to efficiently activate accumulation of the viral m123 immediate-early mRNA in infected macrophages. M78 facilitates the accumulation of the immediate-early mRNA in cycloheximide-treated cells, arguing that it acts in the absence of de novo protein synthesis. We conclude that the M78 G protein-coupled receptor homologue is delivered to cells as a constituent of the virion, and it acts to facilitate the accumulation of immediate-early mRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stem cell leukemia (SCL) gene encodes a tissue-specific basic helix–loop–helix (bHLH) protein with a pivotal role in hemopoiesis and vasculogenesis. Several enhancers have been identified within the murine SCL locus that direct reporter gene expression to subdomains of the normal SCL expression pattern, and long-range sequence comparisons of the human and murine SCL loci have identified additional candidate enhancers. To facilitate the characterization of regulatory elements, we have sequenced and analyzed 33 kb of the SCL genomic locus from the pufferfish Fugu rubripes, a species with a highly compact genome. Although the pattern of SCL expression is highly conserved from mammals to teleost fish, the genes flanking pufferfish SCL were unrelated to those known to flank both avian and mammalian SCL genes. These data suggest that SCL regulatory elements are confined to the region between the upstream and downstream flanking genes, a region of 65 kb in human and 8.5 kb in pufferfish. Consistent with this hypothesis, the entire 33-kb pufferfish SCL locus directed appropriate expression to hemopoietic and neural tissue in transgenic zebrafish embryos, as did a 10.4-kb fragment containing the SCL gene and extending to the 5′ and 3′ flanking genes. These results demonstrate the power of combining the compact genome of the pufferfish with the advantages that zebrafish provide for studies of gene regulation during development. Furthermore, the pufferfish SCL locus provides a powerful tool for the manipulation of hemopoiesis and vasculogenesis in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have cloned a fusion partner of the MLL gene at 11q23 and identified it as the gene encoding the human formin-binding protein 17, FBP17. It maps to chromosome 9q34 centromeric to ABL. The gene fusion results from a complex chromosome rearrangement that was resolved by fluorescence in situ hybridization with various probes on chromosomes 9 and 11 as an ins(11;9)(q23;q34)inv(11)(q13q23). The rearrangement resulted in a 5′-MLL/FBP17-3′ fusion mRNA. We retrovirally transduced murine-myeloid progenitor cells with MLL/FBP17 to test its transforming ability. In contrast to MLL/ENL, MLL/ELL and other MLL-fusion genes, MLL/FBP17 did not give a positive readout in a serial replating assay. Therefore, we assume that additional cooperating genetic abnormalities might be needed to establish a full malignant phenotype. FBP17 consists of a C-terminal Src homology 3 domain and an N-terminal region that is homologous to the cell division cycle protein, cdc15, a regulator of the actin cytoskeleton in Schizosaccharomyces pombe. Both domains are separated by a consensus Rho-binding motif that has been identified in different Rho-interaction partners such as Rhotekin and Rhophilin. We evaluated whether FBP17 and members of the Rho family interact in vivo with a yeast two-hybrid assay. None of the various Rho proteins tested, however, interacted with FBP17. We screened a human kidney library and identified a sorting nexin, SNX2, as a protein interaction partner of FBP17. These data provide a link between the epidermal growth factor receptor pathway and an MLL fusion protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leukemia inhibitory factor (LIF) promotes differentiated cell function in several systems. We recently reported LIF and LIF receptor expression in human fetal pituitary corticotrophs in vivo and demonstrated LIF stimulation of adrenocorticotrophin (ACTH) transcription in vitro, suggesting a role for LIF in corticotroph development. We therefore assessed the action of LIF on proliferating murine corticotroph cells (AtT20). LIF impairs proliferation of AtT20 cells (25% reduction versus control, P < 0.03), while simultaneously enhancing ACTH secretion (2-fold, P < 0.001) and augmenting ACTH responsiveness to corticotrophin-releasing hormone (CRH) action (4-fold, P < 0.001). This attenuation of cell growth is due to a block of cell cycle progression from G1 into S phase, as measured by flow cytometric analysis (24 +/- 0.8 versus 11.57 +/- 1.5, P < 0.001). Using bromodeoxyuridine incorporation assays, loss of cells in S phase was confirmed (25 +/- 0.08 to 9.4 +/- 1.4, P < 0.008). In contrast, CRH induced the G2/M phase (3.6 +/- 0.2 to 15.4 +/- 3, P < 0.001). This effect was blunted by LIF (P < 0.001 versus CRH alone). Cyclin A mRNA levels, which decline in S phase, were stimulated 3.5-fold by LIF and markedly suppressed by CRH. These results indicate a LIF-induced cell cycle block occurring at G1/S in corticotroph cells. Thus, LIF reduces proliferation, enhances ACTH secretion, and potentiates effects of CRH on ACTH secretion while blocking effects of CRH on the cell cycle. Responses of these three markers of differentiated corticotroph function indicate LIF to be a differentiation factor for pituitary corticotroph cells by preferential phenotypic switching from proliferative to synthetic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, we reported that a 61-bp subgenomic HBV DNA sequence (designated as 15AB, nt 1855-1915) is a hot spot for genomic recombination and that a cellular protein binding to 15AB may be the putative recombinogenic protein. In the present study, we established the existence of a 15AB-like sequence in human and rat chromosomal DNA by Southern blot analysis. The 15AB-like sequence isolated from the rat chromosome demonstrated a 80.9% identity with 5'-CCAAGCTGTGCCTTGGGTGGC-3', at 1872-1892 of the hepatitis B virus genome, thought to be the essential region for recombination. Interestingly, this 15AB-like sequence also contained the pentanucleotide motifs GCTGG and CCAGC as an inverted repeat, part of the chi known hot spot for recombination in Escherichia coli. Importantly, a portion of the 15AB-like sequence is homologous (82.1%, 23/28 bp) to break point clusters of the human promyelocytic leukemia (PML) gene, characterized by a translocation [t(15;17)], and to rearranged mouse DNA for the immunoglobulin kappa light chain. Moreover, 15AB and 15AB-like sequences have striking homologies (12/15 = 80.0% and 13/15 = 86.7%, respectively) to the consensus sequence for topoisomerase II. Our present results suggest that this 15AB-like sequence in the rat genome might be a recombinogenic candidate triggering genomic instability in carcinogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p53 protein is an attractive target for immunotherapy, because mutations in the p53 gene are the most common genetic alterations found in human tumors. These mutations result in high levels of p53 protein in the tumor cell, whereas the expression level of wild-type p53 in nonmalignant tissue is usually much lower. Several canarypox virus recombinants expressing human or murine p53 in wild-type or mutant form were constructed. Immunization with these viruses protected BALB/c mice from a challenge with an isogenic and highly tumorigenic mouse fibroblast tumor cell line expressing high levels of mutant p53. The tumor protection was equally effective regardless of whether wild-type or mutant p53 was used for the immunization, indicating that the immunologic response was not dependent on any particular p53 mutation and that immunization with this live virus vaccine works effectively against mutant p53 protein expressed in a tumor cell. In tumors escaping immunologic rejection, the expression of the p53 protein was commonly down-regulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transgenic mouse lines have been developed that express the tv-a receptor under the control of the chicken beta-actin promoter. These mice express the tv-a receptor in most or all tissues and in the early embryo. An avian leukosis virus (ALV)-based retroviral vector system was used for the efficient delivery of genes into preimplantation mouse embryos from these transgenic lines. Experimental animals could be generated quickly and easily by infecting susceptible blastocysts with ALV-based retroviral vectors. Expression of the delivered genes was controlled by either the constitutive viral promoter contained in the long terminal repeat or an internal nonviral tissue-specific promoter. Mating the infected founder chimeric animals produced animals that carry the ALV provirus as a transgene. A subset of the integrated proviruses expressed the chloramphenicol acetyltransferase reporter gene from either the promoter in the long terminal repeat or an internal promoter, which we believe indicates that many of the sites that are accessible to viral DNA insertion in preimplantation embryos are incompatible with expression in older animals. This approach should prove useful for studies on murine cell lineage and development, providing models for studying oncogenesis, and testing gene therapy strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcriptional transactivator (Tas) of simian foamy virus type 1 strongly augments gene expression directed by both the promoter in the viral long terminal repeat and the newly discovered internal promoter located within the env gene. A region of 121 bp, located immediately 5' to the TATA box in the internal promoter, is required for transactivation by Tas. The present study aimed to identify the precise Tas-responsive target(s) in this region and to determine the role of Tas in transcriptional regulation. By analysis of both clustered-site mutations and hybrid promoters in transient expression assays in murine and simian cells, two separate sequence elements within this 121-bp region were shown to be Tas-dependent transcriptional enhancers. These targets, each < 30 bp in length and displaying no apparent sequence homology one to the other, are designated the promoter-proximal and promoter-distal elements. By means of the gel electrophoresis mobility-shift assays, using purified glutathione S-transferase-Tas fusion protein expressed in Escherichia coli, the target proximal to the TATA box exhibited strong binding to glutathione S-transferase-Tas, whereas the distal element appears not to bind. In addition, footprint analysis revealed that 26 bp in the promoter proximal element was protected by glutathione S-transferase-Tas from DNase I. We propose a model for transactivation of the simian foamy virus type 1 internal promoter in which Tas interacts directly with the proximal target element positioned immediately 5' to the TATA box. In this model, Tas attached to this element is presumed to interact with a component(s) of the cellular RNA polymerase II initiation complex and thereby enhance transcription directed by the viral internal promoter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mouse hepatitis virus (MHV), a murine coronavirus known to cause encephalitis and demyelination, uses murine homologues of carcinoembryonic antigens as receptors. However, the expression of these receptors is extremely low in the brain. By low-stringency screening of a mouse brain cDNA library, we have identified a member of the pregnancy-specific glycoprotein (PSG) subgroup of the carcinoembryonic antigen gene family. Unlike other PSG that are expressed in the placenta, it is expressed predominantly in the brain. Transfection of the cDNA into COS-7 cells, which lack a functional MHV receptor, conferred susceptibility to infection by some MHV strains, including A59, MHV-2, and MHV-3, but not JHM. Thus, this is a virus strain-specific receptor. The detection of multiple receptors for MHV suggests the flexibility of this virus in receptor utilization. The identification of this virus in receptor utilization. The identification of a PSG predominantly expressed in the brain also expands the potential functions of these molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hexamethylenebisacetamide-induced terminal differentiation of Friend virus-transformed murine erythroleukemia (MEL) cells can be inhibited by okadaic acid, an inhibitor of type 1 and type 2A protein phosphatases. The inhibition is shown to be correlated with prevention of dephosphorylation of retinoblastoma protein (pRB) in cells and bypass of G1 prolongation in the cell cycle. These results suggest that pRB-mediated G1 prolongation is necessary for MEL cells to commit to terminal differentiation. However, further experiments demonstrate that the simple cell cycle exit is not sufficient for commitment to terminal differentiation. Induction of dephosphorylation of pRB and subsequent G1 prolongation by forskolin does not lead MEL cells to differentiate. Additional pRB has been expressed in MEL cells by transfection with a neo-resistant plasmid containing RB cDNA under the control of a cytomegalovirus promoter. Exogenously expressed pRB is hyperphosphorylated in logarithmically growing MEL cells without any noticeable change in growth rate between the transfected cell line and the parental cell line. This result suggests that pRB in MEL cells is regulated by protein kinases and protein phosphatases and not by transcription.