81 resultados para Mouse and chicken cardiogenesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of database AsMamDB is to facilitate the systematic study of alternatively spliced genes of mammals. Version 1.0 of AsMamDB contains 1563 alternatively spliced genes of human, mouse and rat, each associated with a cluster of nucleotide sequences. The main information provided by AsMamDB includes gene alternative splicing patterns, gene structures, locations in chromosomes, products of genes and tissues where they express. Alternative splicing patterns are represented by multiple alignments of various gene transcripts and by graphs of their topological structures. Gene structures are illustrated by exon, intron and various regulatory elements distributions. There are 4204 DNAs, 3977 mRNAs, 8989 CDSs and 126 931 ESTs in the current database. More than 130 000 GenBank entries are covered and 4443 MEDLINE records are linked. DNA, mRNA, exon, intron and relevant regulatory element sequences are provided in FASTA format. More information can be obtained by using the web-based multiple alignment tool Asalign and various category lists. AsMamDB can be accessed at http://166.111.30.6 5/ASMAM DB.html.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of a human thyroid serial analysis of gene expression (SAGE) library shows the presence of an abundant SAGE tag corresponding to the mRNA of thyroglobulin (TG). Additional, less abundant tags are present that can not be linked to any other known gene, but show considerable homology to the wild-type TG tag. To determine whether these tags represent TG mRNA molecules with alternative cleavage, 3′-RACE clones were sequenced. The results show that the three putative TG SAGE tags can be attributed to TG transcripts and reflect the use of alternative polyadenylation cleavage sites downstream of a single polyadenylation signal in vivo. By screening more than 300 000 sequences corresponding to human, mouse and rat transcripts for this phenomenon we show that a considerable percentage of mRNA transcripts (44% human, 22% mouse and 22% rat) show cleavage site heterogeneity. When analyzing SAGE-generated expression data, this phenomenon should be considered, since, according to our calculations, 2.8% of human transcripts show two or more different SAGE tags corresponding to a single gene because of alternative cleavage site selection. Both experimental and in silico data show that the selection of the specific cleavage site for poly(A) addition using a given polyadenylation signal is more variable than was previously thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymorphisms in the prion protein gene are known to affect prion disease incubation times and susceptibility in humans and mice. However, studies with inbred lines of mice show that large differences in incubation times occur even with the same amino acid sequence of the prion protein, suggesting that other genes may contribute to the observed variation. To identify these loci we analyzed 1,009 animals from an F2 intercross between two strains of mice, CAST/Ei and NZW/OlaHSd, with significantly different incubation periods when challenged with RML scrapie prions. Interval mapping identified three highly significantly linked regions on chromosomes 2, 11, and 12; composite interval mapping suggests that each of these regions includes multiple linked quantitative trait loci. Suggestive evidence for linkage was obtained on chromosomes 6 and 7. The sequence conservation between the mouse and human genome suggests that identification of mouse prion susceptibility alleles may have direct relevance to understanding human susceptibility to bovine spongiform encephalopathy (BSE) infection, as well as identifying key factors in the molecular pathways of prion pathogenesis. However, the demonstration of other major genetic effects on incubation period suggests the need for extreme caution in interpreting estimates of variant Creutzfeldt–Jakob disease epidemic size utilizing existing epidemiological models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the fact that Papilio glaucus and Papilio polyxenes share no single hostplant species, both species feed to varying extents on hostplants that contain furanocoumarins. P. glaucus contains two nearly identical genes, CYP6B4v2 and CYP6B5v1, and P. polyxenes contains two related genes, CYP6B1v3 and CYP6B3v2. Except for CYP6B3v2, the substrate specificity of which has not yet been defined, each of the encoded cytochrome P450 monooxygenases (P450s) metabolizes an array of linear furanocoumarins. All four genes are transcriptionally induced in larvae by exposure to the furanocoumarin xanthotoxin; several are also induced by other furanocoumarins. Comparisons of the organizational structures of these genes indicate that all have the same intron/exon arrangement. Sequences in the promoter regions of the P. glaucus CYP6B4v2/CYP6B5v1 genes and the P. polyxenes CYP6B3v2 gene are similar but not identical to the -146 to -97 region of CYP6B1v3 gene, which contains a xanthotoxin-responsive element (XRE-xan) important for basal and xanthotoxin-inducible transcription of CYP6B1v3. Complements of the xenobiotic-responsive element (XRE-AhR) in the dioxin-inducible human and rat CYP1A1 genes also exist in all four promoters, suggesting that these genes may be regulated by dioxin. Antioxidant-responsive elements (AREs) in mouse and rat glutathione S-transferase genes and the Barbie box element (Bar) in the bacterial CYP102 gene exist in the CYP6B1v3, CYP6B4v2, and CYP6B5v1 promoters. Similarities in the protein sequences, intron positions, and xanthotoxin- and xenobiotic-responsive promoter elements indicate that these insect CYP6B genes are derived from a common ancestral gene. Evolutionary comparisons between these P450 genes are the first available for a group of insect genes transcriptionally regulated by hostplant allelochemicals and provide insights into the process by which insects evolve specialized feeding habits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three isoforms of calcitonin (CT) exist in salmonids. Isohormones I and II are expressed in the pink salmon Oncorhynchus gorbuscha. We report here the existence in this species of a CT gene and of its transcripts, which encode for a fourth isohormone, the salmon CT (sCT) IV. This new CT gene was identified by PCR from genomic DNA and by sequencing the amplified DNA. The expression of this CT gene was established in ultimobranchial body and brain, by reverse transcription-PCR, hybridization and sequencing. The sCT IV gene, like the sCT I gene, is a complex transcription unit, containing exons encoding for a CT as a calcitonin gene-related peptide (CGRP) molecule. The predicted peptide, sCT IV, has a greater homology with the eel CT and the sCT II than with the sCT I. Alignment of the sCT IV with other fish and chicken CT showed amino acid modifications in similar positions as those found during evolution. The predicted salmon CGRP IV peptide is highly homologous to the known CGRP molecules in other species, confirming the high conservation of the molecule during evolution. This identification of a new salmon CT gene is interesting both for the therapeutic potential represented by the new molecules encoded by this gene and for phylogenetic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic background of the T cell can influence T helper (Th) phenotype development, with some murine strains (e.g., B10.D2) favoring Th1 development and others (e.g., BALB/c) favoring Th2 development. Recently we found that B10.D2 exhibit an intrinsically greater capacity to maintain interleukin 12 (IL-12) responsiveness under neutral conditions in vitro compared with BALB/c T cells, allowing for prolonged capacity to undergo IL-12-induced Th1 development. To begin identification of the loci controlling this genetic effect, we used a T-cell antigen receptor-transgenic system for in vitro analysis of intercrosses between BALB/c and B10.D2 mice and have identified a locus on murine chromosome 11 that controls the maintenance of IL-12 responsiveness, and therefore the subsequent Th1/Th2 response. This chromosomal region is syntenic with a locus on human chromosome 5q31.1 shown to be associated with elevated serum IgE levels, suggesting that genetic control of Th1/Th2 differentiation in mouse, and of atopy development in humans, may be expressed through similar mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The group C adenovirus E4orf6 protein has previously been shown to bind to the p53 cellular tumor suppressor protein and block its ability to activate transcription. Here we show that the E4orf6 protein blocks the induction of p53-mediated apoptosis when AT6 cells, which harbor a temperature-sensitive p53, are shifted to the permissive temperature. The E4orf6 protein does not, however, prevent the induction of apoptosis in p53-deficient H1299 cells by treatment with tumor necrosis factor alpha and cycloheximide. The E4orf6 protein also cooperates with the adenovirus E1A protein to transform primary baby rat kidney cells, and it cooperates with the adenovirus E1A plus E1B 19-kDa and E1B 55-kDa proteins to increase the number of baby rat kidney cell transformants and enhance the rate at which they arise. The level of p53 is substantially reduced in transformed cells expressing the E4orf6 protein in comparison to adenovirus transformants lacking it. The E4orf6 gene also accelerates tumor formation when transformed baby rat kidney cells are injected subcutaneously into the nude mouse, and it converts human 293 cells from nontumorigenic to tumorigenic in nude mice. In addition to the well-studied E1A and E1B oncogenes, group C adenoviruses harbor a third oncogene, E4orf6, which functions in some respects similarly to the E1B oncogene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian hematopoietic stem cell (HSC) commitment and differentiation into lymphoid lineage cells proceed through a series of developmentally restricted progenitor compartments. A complete understanding of this process, and how it differs from HSC commitment and differentiation into cells of the myeloid/erythroid lineages, requires the development of model systems that support HSC commitment to the lymphoid lineages. We now describe a human bone marrow stromal cell culture that preferentially supports commitment and differentiation of human HSC to CD19+ B-lineage cells. Fluorescence activated cell sorterpurified CD34++/lineage-cells were isolated from fetal bone marrow and cultured on human fetal bone marrow stromal cells in serum-free conditions containing no exogenous cytokines. Over a period of 3 weeks, CD34++/lineage- cells underwent commitment, differentiation, and expansion into the B lineage. Progressive changes included: loss of CD34, acquisition of and graded increases in the level of cell surface CD19, and appearance of immature B cells expressing mu/kappa or mu/lambda cell surface Ig receptors. The tempo and phenotype of B-cell development was not influenced by the addition of IL-7 (10 ng/ml), or by the addition of goat anti-IL-7 neutralizing antibody. These results indicate a profound difference between mouse and human in the requirement for IL-7 in normal B-cell development, and provide an experimental system to identify and characterize human bone marrow stromal cell-derived molecules crucial for human B lymphopoiesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hormonal and genetic factors strongly influence the susceptibility of inbred mice to hepatocarcinogenesis. Female C57BR/cdJ (BR) mice are extremely susceptible to liver tumor induction relative to other strains because they are genetically insensitive to the inhibition of hepatocarcinogenesis by ovarian hormones. To determine the genetic basis for the sensitivity of BR mice relative to resistant C57BL/6J (B6) mice, we treated 12-day-old B6BRF1 x B6 and B6BRF1 x B6BRF1 (F2) animals with N,N-diethylnitrosamine (0.1 micromol/g of body weight) and enumerated liver tumors at 32 weeks of age in males and at 50 weeks in females. Genomic DNA samples from backcross and F2 mice were analyzed for 70 informative simple sequence length polymorphism markers. Genetic markers on chromosome 17 (D17Mit21) and chromosome 1 (D1Mit33) cosegregated with high tumor multiplicity in both sexes. Together, these loci [designated Hcf1 and Hcf2 (Hepatocarcinogenesis in females), respectively] account for virtually all of the difference in sensitivity between BR and B6 mice. The Hcf1 locus accounts for a majority of the higher susceptibility of BR mice of both sexes. Backcross female mice heterozygous at both loci (33 +/- 23 tumors per mouse) and at Hcf1 only (17 +/- 18) were 15- and 8-fold more sensitive, respectively, than mice homozygous for the B6 alleles at Hcf1 and Hcf2 (2.2 +/- 3.9). In backcross male mice, the double heterozygotes (35 +/- 22) and Hcf1 heterozygotes (28 +/- 12) were 5.4- and 4.3-fold more sensitive than mice homozygous for B6 alleles at both loci (6.5 +/- 5.4).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neural cell adhesion molecule (N-CAM) mediates homophilic binding between a variety of cell types including neurons, neurons and glia, and neurons and muscle cells. The mechanism by which N-CAM on one cell interacts with N-CAM on another, however, is unknown. Attempts to identify which of the five immunoglobulin-like domains (Ig I-V) and the two fibronectin type III repeats (FnIII 1-2) in the extracellular region of N-CAM are involved in this process have led to ambiguous results. We have generated soluble recombinant proteins corresponding to each of the individual immunoglobulin domains and the combined FnIII 1-2 and prepared polyclonal antibodies specific for each. The purified proteins and antibodies were used in aggregation experiments with fluorescent microspheres and chicken embryo brain cells to determine possible contributions of each domain to homophilic adhesion. The recombinant domains were tested for their ability to bind to purified native N-CAM, to bind to each other, and to inhibit the aggregation of N-CAM on microspheres and the aggregation of neuronal cells. Each of the immunoglobulin domains bound to N-CAM, and in solution all of the immunoglobulin domains inhibited the aggregation of N-CAM-coated microspheres. Soluble Ig II, Ig III, and Ig IV inhibited neuronal aggregation; antibodies against whole N-CAM, the Ig III domain, and the Ig I domain all strongly inhibited neuronal aggregation, as well as the aggregation of N-CAM-coated microspheres. Of all the domains, the third immunoglobulin domain alone demonstrated the ability to self-aggregate, whereas Ig I bound to Ig V and Ig II bound to Ig IV. The combined FnIII 1-2 exhibited a slight ability to self-aggregate but did not bind to any of the immunoglobulin-like domains. These results suggest that N-CAM-N-CAM binding involves all five immunoglobulin domains and prompt the hypothesis that in homophilic cell-cell binding mediated by N-CAM these domains may interact pairwise in an antiparallel orientation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Joining (J) chain is a component of polymeric, but not monomeric, immunoglobulin (Ig) molecules and may play a role in their polymerization and transport across epithelial cells. To date, study of the J chain has been confined to vertebrates that produce Ig and in which the J chain displays a considerable degree of structural homology. The role of the J chain in Ig polymerization has been questioned and, since the J chain can be expressed in lymphoid cells that do not produce Ig, it is possible that the J chain may have other functions. To explore this possibility, we have surveyed J-chain gene, mRNA, and protein expression by using reverse transcriptase-coupled PCR, Northern blot analysis, and immunoblot analysis in invertebrate species that do not produce Ig. We report that the J-chain gene is expressed in invertebrates (Mollusca, Annelida, Arthropoda, Echinodermata, and Holothuroidea), as well as in representative vertebrates (Mammalia, Teleostei, Amphibia). Furthermore, J-chain cDNA from the earthworm has a high degree of homology (68-76%) to human, mouse, and bovine J chains. Immunohistochemical studies reveal that the J chain is localized in the mucous cells of body surfaces, intestinal epithelial cells, and macrophage-like cells of the earthworm and slug. This study suggests that the J chain is a primitive polypeptide that arose before the evolution of Ig molecules and remains highly conserved in extent invertebrates and vertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adrenoleukodystrophy (ALD), a severe demyelinating disease, is caused by mutations in a gene coding for a peroxisomal membrane protein (ALDP), which belongs to the superfamily of ATP binding cassette (ABC) transporters and has the structure of a half transporter. ALDP showed 38% sequence identity with another peroxisomal membrane protein, PMP70, up to now its closest homologue. We describe here the cloning and characterization of a mouse ALD-related gene (ALDR), which codes for a protein with 66% identity with ALDP and shares the same half transporter structure. The ALDR protein was overexpressed in COS cells and was found to be associated with the peroxisomes. The ALD and ALDR genes show overlapping but clearly distinct expression patterns in mouse and may thus play similar but nonequivalent roles. The ALDR gene, which appears highly conserved in man, is a candidate for being a modifier gene that could account for some of the extreme phenotypic variability of ALD. The ALDR gene is also a candidate for being implicated in one of the complementation groups of Zellweger syndrome, a genetically heterogeneous disorder of peroxisome biogenesis, rare cases of which were found to be associated with mutations in the PMP70 (PXMP1) gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare nucleated fetal cells circulate within maternal blood. Noninvasive prenatal diagnosis by isolation and genetic analysis of these cells is currently being undertaken. We sought to determine if genetic evidence existed for persistent circulation of fetal cells from prior pregnancies. Venous blood samples were obtained from 32 pregnant women and 8 nonpregnant women who had given birth to males 6 months to 27 years earlier. Mononuclear cells were sorted by flow cytometry using antibodies to CD antigens 3, 4, 5, 19, 23, 34, and 38. DNA within sorted cells, amplified by PCR for Y chromosome sequences, was considered predictive of a male fetus or evidence of persistent male fetal cells. In the 32 pregnancies, male DNA was detected in 13 of 19 women carrying a male fetus. In 4 of 13 pregnancies with female fetuses, male DNA was also detected. All of the 4 women had prior pregnancies; 2 of the 4 had prior males and the other 2 had terminations of pregnancy. In 6 of the 8 nonpregnant women, male DNA was detected in CD34+CD38+ cells, even in a woman who had her last son 27 years prior to blood sampling. Our data demonstrate the continued maternal circulation of fetal CD34+ or CD34+CD38+ cells from a prior pregnancy. The prolonged persistence of fetal progenitor cells may represent a human analogue of the microchimerism described in the mouse and may have significance in development of tolerance of the fetus. Pregnancy may thus establish a long-term, low-grade chimeric state in the human female.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding of the lipid A portion of bacterial lipopolysaccharide (LPS) to leukocyte CD14 activates phagocytes and initiates the septic shock syndrome. Two lipid A analogs, lipid IVA and Rhodobacter sphaeroides lipid A (RSLA), have been described as LPS-receptor antagonists when tested with human phagocytes. In contrast, lipid IVA activated murine phagocytes, whereas RSLA was an LPS antagonist. Thus, these compounds displayed a species-specific pharmacology. To determine whether the species specificity of these LPS antagonists occurred as a result of interactions with CD14, the effects of lipid IVA and RSLA were examined by using human, mouse, and hamster cell lines transfected with murine or human CD14 cDNA expression vectors. These transfectants displayed sensitivities to lipid IVA and RSLA that reflected the sensitivities of macrophages of similar genotype (species) and were independent of the source of CD14 cDNA. For example, hamster macrophages and hamster fibroblasts transfected with either mouse or human-derived CD14 cDNA responded to lipid IVA and RSLA as LPS mimetics. Similarly, lipid IVA and RSLA acted as LPS antagonists in human phagocytes and human fibrosarcoma cells transfected with either mouse or human-derived CD14 cDNA. Therefore, the target of these LPS antagonists, which is encoded in the genomes of these cells, is distinct from CD14. Although the expression of CD14 is required for macrophage-like sensitivity to LPS, CD14 cannot discriminate between the lipid A moieties of these agents. We hypothesize that the target of the LPS antagonists is a lipid A recognition protein which functions as a signaling receptor that is triggered after interaction with CD14-bound LPS.