130 resultados para Major Gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

CIITA is a master transactivator of the major histocompatibility complex class II genes, which are involved in antigen presentation. Defects in CIITA result in fatal immunodeficiencies. CIITA activation is also the control point for the induction of major histocompatibility complex class II and associated genes by interferon-γ, but CIITA does not bind directly to DNA. Expression of CIITA in G3A cells, which lack endogenous CIITA, followed by in vivo genomic footprinting, now reveals that CIITA is required for the assembly of transcription factor complexes on the promoters of this gene family, including DRA, Ii, and DMB. CIITA-dependent promoter assembly occurs in interferon-γ-inducible cell types, but not in B lymphocytes. Dissection of the CIITA protein indicates that transactivation and promoter loading are inseparable and reveal a requirement for a GTP binding motif. These findings suggest that CIITA may be a new class of transactivator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opiates are potent analgesic and addictive compounds. They also act on immune responses, and morphine, the prototypic opiate, has been repeatedly described as an immunosuppressive drug. Pharmacological studies have suggested that the inhibitory action of opiates on immunity is mediated by multiple opioid receptor sites but molecular evidence has remained elusive. Recently, three genes encoding μ- (MOR), δ-, and κ-opioid receptors have been cloned. To investigate whether the μ-opioid receptor is functionally implicated in morphine immunosuppression in vivo, we have examined immune responses of mice with a genetic disruption of the MOR gene. In the absence of drug, there was no difference between wild-type and mutant mice with regard to a large number of immunological endpoints, suggesting that the lack of MOR-encoded protein has little consequence on immune status. Chronic morphine administration induced lymphoid organ atrophy, diminished the ratio of CD4+CD8+ cells in the thymus and strongly reduced natural killer activity in wild-type mice. None of these effects was observed in MOR-deficient mice after morphine treatment. This demonstrates that the MOR gene product represents a major molecular target for morphine action on the immune system. Because our previous studies of MOR-deficient mice have shown that this receptor protein is also responsible for morphine analgesia, reward, and physical dependence, the present results imply that MOR-targeted therapeutic drugs that are developed for the treatment of pain or opiate addiction may concomitantly influence immune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] are mediated by the vitamin D receptor (VDR), a member of the nuclear receptor superfamily of transcriptional regulators. We have identified upstream exons of the human (h) VDR gene that are incorporated into variant transcripts, two of which encode N-terminal variant receptor proteins. Expression of the hVDR gene, which spans more than 60 kb and consists of at least 14 exons, is directed by two distinct promoters. A tissue-specific distal promoter generates unique transcripts in tissues involved in calcium regulation by 1,25-(OH)2D3 and can direct the expression of a luciferase reporter gene in a cell line-specific manner. These major N-terminal differences in hVDR transcripts, potentially resulting in structural differences in the expressed receptor, may contribute to cellular responsiveness to 1,25-(OH)2D3 through tissue differences in the regulation of VDR expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiomyopathy (CM) is a primary degenerative disease of myocardium and is traditionally categorized into hypertrophic and dilated CMs (HCM and DCM) according to its gross appearance. Cardiomyopathic hamster (CM hamster), a representative model of human hereditary CM, has HCM and DCM inbred sublines, both of which descend from the same ancestor. Herein we show that both HCM and DCM hamsters share a common defect in a gene for δ-sarcoglycan (δ-SG), the functional role of which is yet to be characterized. A breakpoint causing genomic deletion was found to be located at 6.1 kb 5′ upstream of the second exon of δ-SG gene, and its 5′ upstream region of more than 27.4 kb, including the authentic first exon of δ-SG gene, was deleted. This deletion included the major transcription initiation site, resulting in a deficiency of δ-SG transcripts with the consequent loss of δ-SG protein in all the CM hamsters, despite the fact that the protein coding region of δ-SG starting from the second exon was conserved in all the CM hamsters. We elucidated the molecular interaction of dystrophin-associated glycoproteins including δ-SG, by using an in vitro pull-down study and ligand overlay assay, which indicates the functional role of δ-SG in stabilizing sarcolemma. The present study not only identifies CM hamster as a valuable animal model for studying the function of δ-SG in vivo but also provides a genetic target for diagnosis and treatment of human CM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidemiological evidence has suggested that some pediatric leukemias may be initiated in utero and, for some pairs of identical twins with concordant leukemia, this possibility has been strongly endorsed by molecular studies of clonality. Direct evidence for a prenatal origin can only be derived by prospective or retrospective detection of leukemia-specific molecular abnormalities in fetal or newborn samples. We report a PCR-based method that has been developed to scrutinize neonatal blood spots (Guthrie cards) for the presence of numerically infrequent leukemic cells at birth in individuals who subsequently developed leukemia. We demonstrate that unique or clonotypic MLL-AF4 genomic fusion sequences are present and detectable in neonatal blood spots from individuals who were diagnosed with acute lymphoblastic leukemia at ages 5 months to 2 years and, therefore, have arisen during fetal hematopoiesis in utero. This result provides unequivocal evidence for a prenatal initiation of acute leukemia in young patients. The method should be applicable to other fusion genes in children with common subtypes of leukemia and will be of value in attempts to unravel the natural history and etiology of this major subtype of pediatric cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the sister of P-glycoprotein (Spgp) or bile salt export pump (BSEP) are associated with Progressive Familial Intrahepatic Cholestasis (PFIC2). Spgp is predominantly expressed in the canalicular membranes of liver. Consistent with in vitro evidence demonstrating the involvement of Spgp in bile salt transport, PFIC2 patients secrete less than 1% of biliary bile salts compared with normal infants. The disease rapidly progresses to hepatic failure requiring liver transplantation before adolescence. In this study, we show that the knockout of spgp gene in mice results in intrahepatic cholestasis, but with significantly less severity than PFIC2 in humans. Some unexpected characteristics are observed. Notably, although the secretion of cholic acid in mutant mice is greatly reduced (6% of wild-type), total bile salt output in mutant mice is about 30% of wild-type. Also, secretion of an unexpectedly large amount of tetra-hydroxylated bile acids (not detected in wild-type) is observed. These results suggest that hydroxylation and an alternative canalicular transport mechanism for bile acids compensate for the absence of Spgp function and protect the mutant mice from severe cholestatic damage. In addition, the spgp−/− mice display a significant increase in the secretion of cholesterol and phospholipids into the bile. This latter observation in spgp−/− mice suggests that intrahepatic, rather than intracanalicular, bile salts are the major driving force for the biliary lipid secretion. The spgp−/− mice thus provide a unique model for gaining new insights into therapeutic intervention for intrahepatic cholestasis and understanding mechanisms associated with lipid homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macromolecular transport systems in bacteria currently are classified by function and sequence comparisons into five basic types. In this classification system, type II and type IV secretion systems both possess members of a superfamily of genes for putative NTP hydrolase (NTPase) proteins that are strikingly similar in structure, function, and sequence. These include VirB11, TrbB, TraG, GspE, PilB, PilT, and ComG1. The predicted protein product of tadA, a recently discovered gene required for tenacious adherence of Actinobacillus actinomycetemcomitans, also has significant sequence similarity to members of this superfamily and to several unclassified and uncharacterized gene products of both Archaea and Bacteria. To understand the relationship of tadA and tadA-like genes to those encoding the putative NTPases of type II/IV secretion, we used a phylogenetic approach to obtain a genealogy of 148 NTPase genes and reconstruct a scenario of gene superfamily evolution. In this phylogeny, clear distinctions can be made between type II and type IV families and their constituent subfamilies. In addition, the subgroup containing tadA constitutes a novel and extremely widespread subfamily of the family encompassing all putative NTPases of type IV secretion systems. We report diagnostic amino acid residue positions for each major monophyletic family and subfamily in the phylogenetic tree, and we propose an easy method for precisely classifying and naming putative NTPase genes based on phylogeny. This molecular key-based method can be applied to other gene superfamilies and represents a valuable tool for genome analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of molecular genetic approaches were used to study the effect of rabies virus (RV) infection on host gene expression in mouse brain. The down-regulation of gene expression was found to be a major effect of RV infection by using subtraction hybridization. However, a combination of techniques identified approximately 39 genes activated by infection. These included genes involved in regulation of cell metabolism, protein synthesis, synaptic activity, and cell growth and differentiation. Northern blot analysis to monitor temporal activation of several of these genes following infection revealed essentially two patterns of activation: (i) an early response with up-regulation beginning within 3 days after infection and correlating with transcription of RV nuclear protein; and (ii) a late response with enhanced expression occurring at days 6–7 after infection and associated with peak RV replication. The gene activation patterns and the known functions of their products suggest that a number of host genes may be involved in the replication and spread of RV in the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle tissue is the major site for insulin-stimulated glucose uptake in vivo, due primarily to the recruitment of the insulin-sensitive glucose transporter (GLUT4) to the plasma membrane. Surprisingly, virtually all cultured muscle cells express little or no GLUT4. We show here that adenovirus-mediated expression of the transcriptional coactivator PGC-1, which is expressed in muscle in vivo but is also deficient in cultured muscle cells, causes the total restoration of GLUT4 mRNA levels to those observed in vivo. This increased GLUT4 expression correlates with a 3-fold increase in glucose transport, although much of this protein is transported to the plasma membrane even in the absence of insulin. PGC-1 mediates this increased GLUT4 expression, in large part, by binding to and coactivating the muscle-selective transcription factor MEF2C. These data indicate that PGC-1 is a coactivator of MEF2C and can control the level of endogenous GLUT4 gene expression in muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe spo20-KC104 mutation was originally isolated in a screen for sporulation-deficient mutants, and the spo20-KC104 mutant exhibits temperature-sensitive growth. Herein, we report that S. pombe, spo20+ is essential for fission yeast cell viability and is constitutively expressed throughout the life cycle. We also demonstrate that the spo20+ gene product is structurally homologous to Saccharomyces cerevisiae Sec14, the major phosphatidylinositol transfer protein of budding yeast. This structural homology translates to a significant degree of functional relatedness because reciprocal complementation experiments demonstrate that each protein is able to fulfill the essential function of the other. Moreover, biochemical experiments show that, like Sec14, Spo20 is a phosphatidylinositol/phosphatidylcholine-transfer protein. That Spo20 is required for Golgi secretory function in vegetative cells is indicated by our demonstration that the spo20-KC104 mutant accumulates aberrant Golgi cisternae at restrictive temperatures. However, a second phenotype observed in Spo20-deficient fission yeast is arrest of cell division before completion of cell separation. Consistent with a direct role for Spo20 in controlling cell septation in vegetatively growing cells, localization experiments reveal that Spo20 preferentially localizes to the cell poles and to sites of septation of fission yeast cells. We also report that, when fission yeasts are challenged with nitrogen starvation, Spo20 translocates to the nucleus. This nuclear localization persists during conjugation and meiosis. On completion of meiosis, Spo20 translocates to forespore membranes, and it is the assembly of forespore membranes that is abnormal in spo20-KC104 cells. In such mutants, a considerable fraction of forming prespores fail to encapsulate the haploid nucleus. Our results indicate that Spo20 regulates the formation of specialized membrane structures in addition to its recognized role in regulating Golgi secretory function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zeatin is a naturally occurring cytokinin. Biosynthesis and metabolism studies of zeatin have been directed mostly at the trans isomer, although cis-zeatin and its riboside occur as major components in some plant species. It is not known whether parallel regulatory pathways exist for the two isomers. Based on the sequence of the gene ZOG1 encoding a trans-zeatin O-glucosyltransferase from Phaseolus (EC 2.4.1.203), a cis-zeatin-specific O-glucosyltransferase was isolated from maize. This gene, cisZOG1, contains an ORF of 1,401 nucleotides encoding a protein of 51.1 kDa with 41% identity to the Phaseolus ZOG1 protein. Unexpectedly, the maize enzyme recognizes as substrates cis-zeatin and UDP-glucose but not cis-ribosylzeatin, trans-zeatin, or trans-ribosylzeatin. This finding indicates the existence of cis-specific regulatory elements in plants and suggests that cis-zeatin and derivatives may be more important in cytokinin homeostasis than currently recognized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic analysis of plant–pathogen interactions has demonstrated that resistance to infection is often determined by the interaction of dominant plant resistance (R) genes and dominant pathogen-encoded avirulence (Avr) genes. It was postulated that R genes encode receptors for Avr determinants. A large number of R genes and their cognate Avr genes have now been analyzed at the molecular level. R gene loci are extremely polymorphic, particularly in sequences encoding amino acids of the leucine-rich repeat motif. A major challenge is to determine how Avr perception by R proteins triggers the plant defense response. Mutational analysis has identified several genes required for the function of specific R proteins. Here we report the identification of Rcr3, a tomato gene required specifically for Cf-2-mediated resistance. We propose that Avr products interact with host proteins to promote disease, and that R proteins “guard” these host components and initiate Avr-dependent plant defense responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Symbiotic associations with microorganisms are pivotal in many insects. Yet, the functional roles of obligate symbionts have been difficult to study because it has not been possible to cultivate these organisms in vitro. The medically important tsetse fly (Diptera: Glossinidae) relies on its obligate endosymbiont, Wigglesworthia glossinidia, a member of the Enterobacteriaceae, closely related to Escherichia coli, for fertility and possibly nutrition. We show here that the intracellular Wigglesworthia has a reduced genome size smaller than 770 kb. In an attempt to understand the composition of its genome, we used the gene arrays developed for E. coli. We were able to identify 650 orthologous genes in Wigglesworthia corresponding to ≈85% of its genome. The arrays were also applied for expression analysis using Wigglesworthia cDNA and 61 gene products were detected, presumably coding for some of its most abundant products. Overall, genes involved in cell processes, DNA replication, transcription, and translation were found largely retained in the small genome of Wigglesworthia. In addition, genes coding for transport proteins, chaperones, biosynthesis of cofactors, and some amino acids were found to comprise a significant portion, suggesting an important role for these proteins in its symbiotic life. Based on its expression profile, we predict that Wigglesworthia may be a facultative anaerobic organism that utilizes ammonia as its major source of nitrogen. We present an application of E. coli gene arrays to obtain broad genome information for a closely related organism in the absence of complete genome sequence data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ozone is a major gaseous pollutant thought to contribute to forest decline. Although the physiological and morphological responses of forest trees to ozone have been well characterized, little is known about the molecular basis for these responses. Our studies compared the response to ozone of ozone-sensitive and ozone-tolerant clones of hybrid poplar (Populus maximowizii × Populus trichocarpa) at the physiological and molecular levels. Gas-exchange analyses demonstrated clear differences between the ozone-sensitive clone 388 and the ozone-tolerant clone 245. Although ozone induced a decrease in photosynthetic rate and stomatal conductance in both clones, the magnitude of the decrease in stomatal conductance was significantly greater in the ozone-tolerant clone. RNA-blot analysis established that ozone-induced mRNA levels for phenylalanine ammonia-lyase, O-methyltransferase, a pathogenesis-related protein, and a wound-inducible gene were significantly higher in the ozone-tolerant than in the ozone-sensitive plants. Wound- and pathogen-induced levels of these mRNAs were also higher in the ozone-tolerant compared with the ozone-sensitive plants. The different physiological and molecular responses to ozone exposure exhibited by clones 245 and 388 suggest that ozone tolerance involves the activation of salicylic-acid- and jasmonic-acid-mediated signaling pathways, which may be important in triggering defense responses against oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastoquinone and tocopherols are the two major quinone compounds in higher plant chloroplasts and are synthesized by a common pathway. In previous studies we characterized two loci in Arabidopsis defining key steps of this biosynthetic pathway. Mutation of the PDS1 locus disrupts the activity of p-hydroxyphenylpyruvate dioxygenase (HPPDase), the first committed step in the synthesis of both plastoquinone and tocopherols in plants. Although plants homozygous for the pds1 mutation could be rescued by growth in the presence of homogentisic acid, the product of HPPDase, we were unable to determine if the mutation directly or indirectly disrupted HPPDase activity. This paper reports the isolation of a cDNA, pHPPD, encoding Arabidopsis HPPDase and its functional characterization by expression in both plants and Escherichia coli. pHPPD encodes a 50-kD polypeptide with homology to previously identified HPPDases, including 37 highly conserved amino acid residues clustered in the carboxyl region of the protein. Expression of pHPPD in E. coli catalyzes the accumulation of homogentisic acid, indicating that it encodes a functional HPPDase enzyme. Mapping of pHPPD and co-segregation analysis of the pds1 mutation and the HPPD gene indicate tight linkage. Constitutive expression of pHPPD in a pds1 mutant background complements this mutation. Finally, comparison of the HPPD genomic sequences from wild type and pds1 identified a 17-bp deletion in the pds1 allele that results in deletion of the carboxyterminal 26 amino acids of the HPPDase protein. Together, these data conclusively demonstrate that pds1 is a mutation in the HPPDase structural gene.