106 resultados para MURINE
Resumo:
ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-α6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-α6 mAb, or by mAbs against either the αv or β3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other β1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg β1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface “tetraspan web” facilitates fertilization and that it may do so by fostering ADAM–integrin interactions.
Resumo:
Recombinant human erythropoietin (rHuEpo) has been used successfully in the treatment of cancer-related anemia. Clinical observations with several patients with multiple-myeloma treated with rHuEpo has shown, in addition to the improved quality of life, a longer survival than expected, considering the poor prognostic features of these patients. Based on these observations, we evaluated the potential biological effects of rHuEpo on the course of tumor progression by using murine myeloma models (MOPC-315-IgAλ2 and 5T33 MM-IgG2b). Here we report that daily treatment of MOPC-315 tumor-bearing mice with rHuEpo for several weeks induced complete tumor regression in 30–60% of mice. All regressors that were rechallenged with tumor cells rejected tumor growth, and this resistance was tumor specific. The Epo-triggered therapeutic effect was shown to be attributed to a T cell-mediated mechanism. Serum Ig analysis indicated a reduction in MOPC-315 λ light chain in regressor mice. Intradermal inoculation of 5T33 MM tumor cells followed by Epo treatment induced tumor regression in 60% of mice. The common clinical manifestation of myeloma bone disease in patients with multiple-myeloma was established in these myeloma models. Epo administration to these tumor-bearing mice markedly prolonged their survival and reduced mortality. Therefore, erythropoietin seems to act as an antitumor therapeutic agent in addition to its red blood cell-stimulating activity.
Resumo:
The interaction of particulates with resident macrophages is a consistent feature in certain forms of crystal-induced inflammation, for example, in synovial tissues, lung, and the peritoneum. The mitogenic activity of basic calcium phosphate (BCP) crystals and calcium pyrophosphate dihydrate (CPPD) crystals on synovial fibroblasts has been considered relevant to the synovial hyperplasia observed in crystal-induced arthritis. The aim of the study was to determine whether microcrystals such as these could enhance macrophage survival and induce DNA synthesis, thus indicating that they may contribute to the tissue hyperplasia.
Resumo:
The ubiquitously expressed basic helix–loop–helix (bHLH)-PAS protein ARNT (arylhydrocarbon receptor nuclear transporter) forms transcriptionally active heterodimers with a variety of other bHLH-PAS proteins, including HIF-1α (hypoxia-inducible factor-1α) and AHR (arylhydrocarbon receptor). These complexes regulate gene expression in response to hypoxia and xenobiotics, respectively, and mutation of the murine Arnt locus results in embryonic death by day 10.5 associated with placental, vascular, and hematopoietic defects. The closely related protein ARNT2 is highly expressed in the central nervous system and kidney and also forms complexes with HIF-1α and AHR. To assess unique roles for ARNT2 in development, and reveal potential functional overlap with ARNT, we generated a targeted null mutation of the murine Arnt2 locus. Arnt2−/− embryos die perinatally and exhibit impaired hypothalamic development, phenotypes previously observed for a targeted mutation in the murine bHLH-PAS gene Sim1 (Single-minded 1), and consistent with the recent proposal that ARNT2 and SIM1 form an essential heterodimer in vivo [Michaud, J. L., DeRossi, C., May, N. R., Holdener, B. C. & Fan, C. (2000) Mech. Dev. 90, 253–261]. In addition, cultured Arnt2−/− neurons display decreased hypoxic induction of HIF-1 target genes, demonstrating formally that ARNT2/HIF-1α complexes regulate oxygen-responsive genes. Finally, a strong genetic interaction between Arnt and Arnt2 mutations was observed, indicating that either gene can fulfill essential functions in a dose-dependent manner before embryonic day 8.5. These results demonstrate that Arnt and Arnt2 have both unique and overlapping essential functions in embryonic development.
Resumo:
In the current study, cellular and molecular approaches have been used to analyze the biophysical nature of T cell receptor (TCR)–peptide MHC (pMHC) interactions for two autoreactive TCRs. These two TCRs recognize the N-terminal epitope of myelin basic protein (MBP1–11) bound to the MHC class II protein, I-Au, and are associated with murine experimental autoimmune encephalomyelitis. Mice transgenic for the TCRs have been generated and characterized in other laboratories. These analyses indicate that the mice either develop encephalomyelitis spontaneously (172.10 TCR) or only if immunized with autoantigen in adjuvant (1934.4 TCR). Here, we show that the 172.10 TCR binds MBP1–11:I-Au with a 4–5-fold higher affinity than the 1934.4 TCR. Consistent with the higher affinity, 172.10 T hybridoma cells are significantly more responsive to autoantigen than 1934.4 cells. The interaction of the 172.10 TCR with cognate ligand is more entropically unfavorable than that of the 1934.4 TCR, indicating that the 172.10 TCR undergoes greater conformational rearrangements upon ligand binding. The studies therefore suggest a correlation between the strength and plasticity of a TCR–pMHC interaction and the frequency of spontaneous disease in the corresponding TCR transgenic mice. The comparative analysis of these two TCRs has implications for understanding autoreactive T cell recognition and activation.
Resumo:
Extraembryonic ectoderm-derived factors instruct the pluripotent epiblast cells to develop toward a restricted primordial germ cell (PGC) fate during murine gastrulation. Genes encoding Bmp4 of the Dpp class and Bmp8b of the 60A class are expressed in the extraembryonic ectoderm and targeted mutation of either results in severe defects in PGC formation. It has been shown that heterodimers of DPP and 60A classes of bone morphogenetic proteins (BMPs) are more potent than each homodimers in bone and mesoderm induction in vitro, suggesting that BMP4 and BMP8B may form heterodimers to induce PGCs. To investigate how BMP4 and BMP8B interact and signal for PGC induction, we cocultured epiblasts of embryonic day 6.0–6.25 embryos with BMP4 and BMP8B proteins produced by COS cells. Our data show that BMP4 or BMP8B homodimers alone cannot induce PGCs whereas they can in combination, providing evidence that two BMP pathways are simultaneously required for the generation of a given cell type in mammals and also providing a prototype method for PGC induction in vitro. Furthermore, the PGC defects of Bmp8b mutants can be rescued by BMP8B homodimers whereas BMP4 homodimers cannot mitigate the PGC defects of Bmp4 null mutants, suggesting that BMP4 proteins are also required for epiblast cells to gain germ-line competency before the synergistic action of BMP4 and BMP8B.
Resumo:
Genetic background of the T cell can influence T helper (Th) phenotype development, with some murine strains (e.g., B10.D2) favoring Th1 development and others (e.g., BALB/c) favoring Th2 development. Recently we found that B10.D2 exhibit an intrinsically greater capacity to maintain interleukin 12 (IL-12) responsiveness under neutral conditions in vitro compared with BALB/c T cells, allowing for prolonged capacity to undergo IL-12-induced Th1 development. To begin identification of the loci controlling this genetic effect, we used a T-cell antigen receptor-transgenic system for in vitro analysis of intercrosses between BALB/c and B10.D2 mice and have identified a locus on murine chromosome 11 that controls the maintenance of IL-12 responsiveness, and therefore the subsequent Th1/Th2 response. This chromosomal region is syntenic with a locus on human chromosome 5q31.1 shown to be associated with elevated serum IgE levels, suggesting that genetic control of Th1/Th2 differentiation in mouse, and of atopy development in humans, may be expressed through similar mechanisms.
Resumo:
We describe a heterologous, Semliki Forest virus (SFV)-driven packaging system for the production of infectious recombinant Moloney murine leukemia virus particles. The gag-pol and env genes, as well as a recombinant retrovirus genome (LTR-psi (+)-neoR-LTR), were inserted into individual SFV1 expression plasmids. Replication-competent RNAs were transcribed in vitro and introduced into the cytoplasm of BHK-21 cells using electroporation. The expressed Moloney murine leukemia virus structural proteins produced extracellular virus-like particles. In these particles the gag precursor was processed into mature products, indicating that the particles contained an active protease. The protease of the gag-pol fusion protein was also shown to be active in a trans-complementation assay using a large excess of Pr65gag. Moreover, the particles possessed reverse transcriptase (RT) activity as measured in an in vitro assay. Cotransfection of BHK-21 cells by all three SFV1 constructs resulted in the production of transduction-competent particles at 4 x 10(6) colony-forming units (cfu)/ml during a 5-hr incubation period. Altogether, 2.9 x 10(7) transduction-competent particles were obtained from about 4 x 10(6) transfected cells. Thus, this system represents the first RNA-based packaging system for the production of infectious retroviral particles. The facts that no helper virus could be detected in the virus stocks and that particles carrying the amphotropic envelope could be produced with similar efficiency as those that carry the ecotropic envelope make the system very interesting for gene therapy.
Resumo:
In previous studies we showed that 5 days of treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) mobilized murine repopulating cells to the peripheral blood (PB) and that these cells could be efficiently transduced with retroviral vectors. We also found that, 7-14 days after cytokine treatment, the repopulating ability of murine bone marrow (BM) increased 10-fold. In this study we examined the efficiency of gene transfer into cytokine-primed murine BM cells and extended our observations to a nonhuman primate autologous transplantation model. G-CSF/SCF-primed murine BM cells collected 7-14 days after cytokine treatment were equivalent to post-5-fluorouracil BM or G-CSF/SCF-mobilized PB cells as targets for retroviral gene transfer. In nonhuman primates, CD34-enriched PB cells collected after 5 days of G-CSF/SCF treatment and CD34-enriched BM cells collected 14 days later were superior targets for retroviral gene transfer. When a clinically approved supernatant infection protocol with low-titer vector preparations was used, monkeys had up to 5% of circulating cells containing the vector for up to a year after transplantation. This relatively high level of gene transfer was confirmed by Southern blot analysis. Engraftment after transplantation using primed BM cells was more rapid than that using steady-state bone marrow, and the fraction of BM cells saving the most primitive CD34+/CD38- or CD34+/CD38dim phenotype increased 3-fold. We conclude that cytokine priming with G-CSF/SCF may allow collection of increased numbers of primitive cells from both the PB and BM that have improved susceptibility to retroviral transduction, with many potential applications in hematopoietic stem cell-directed gene therapy.
Resumo:
Four novel murine homeobox genes, Uncx-4.1, OG-2, OG-9, and OG-12, were cloned and partially sequenced. The amino acid sequence of the mouse Uncx-4.1 homeodomain is closely related to the sequence of the unc-4 homeodomain of Caenorhabditis elegans. However, the OG-2, OG-9, and OG-12 homeodomains are relatively diverged and are not closely related to any previously described homeodomain. Northern blot analyses revealed multiple bands of Uncx-4.1, OG-2, OG-9, and OG-12 poly(A)+ RNA in RNA from mouse embryos and adults that change during development and showed that each gene is expressed in a tissue-specific manner. OG-12 cDNAs were cloned that correspond to two alternatively spliced species of OG-12 mRNA. Three major bands of Uncx-4.1 poly(A)+ RNA were found only in RNA from adult mouse brain, but an additional band was observed in RNA from all of the other tissues tested. Major bands of OG-9 and OG-2 poly(A)+ RNA were found only in RNA from striated muscle; however, trace bands were detected in RNA from other tissues.
Resumo:
Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages.
Resumo:
Based on transplantation studies with bone marrow cultured under various conditions, a role of interleukin 11 (IL-11) in the self-renewal and/or the differentiation commitment of hematopoietic stem cells has been indicated. To better evaluate the in vivo effects of IL-11 on stem/progenitor cell biology, lethally irradiated mice were serially transplanted with bone marrow cells transduced with a defective retrovirus, termed MSCV-mIL-11, carrying the murine IL-11 (mIL-11) cDNA and the bacterial neomycin phosphotransferase (neo) gene. High serum levels (i.e., > 1 ng/ml) of mIL-11 in all (20/20) primary and 86% (12/14) of secondary long-term reconstituted mice, as well as 86% (12/14) of tertiary recipients examined at 6 weeks posttransplant, demonstrated persistence of vector expression subsequent to transduction of bone marrow precursors functionally definable as totipotent hematopoietic stem cells. In agreement with results obtained with human IL-11 in other myeloablation models, ectopic mIL-11 expression accelerated recovery of platelets, neutrophils, and, to some extent, total leukocytes while preferentially increasing peripheral platelet counts in fully reconstituted mice. When analyzed 5 months posttransplant, tertiary MSCV-mIL-11 recipients had a significantly greater percentage of G418-resistant colony-forming cells in their bone marrow compared with control MSCV animals. Collectively, these data show that persistent stimulation of platelet production by IL-11 is not detrimental to stem cell repopulating ability; rather, they suggest that IL-11 expression in vivo may have resulted in enhanced maintenance of the most primitive hematopoietic stem cell compartment. The prolonged expression achieved by the MSCV retroviral vector, despite the presence of a selectable marker, contrasts with the frequent transcriptional extinction observed with other retroviral vectors carrying two genes. These findings have potentially important implications for clinical bone marrow transplantation and gene therapy of the hematopoietic system.
Resumo:
UV irradiation interferes with the induction of T cell-mediated immune responses, in part by causing cells in the skin to produce immunoregulatory cytokines. Recent evidence implicates UV-induced DNA damage as a trigger for the cascade of events leading to systemic immune suppression in vivo. However, to date, there has been no direct evidence linking DNA damage and cytokine production in UV-irradiated cells. Here we provide such evidence by showing that treatment of UV-irradiated murine keratinocytes in vitro with liposomal T4 endonuclease V, which accelerates the repair of cyclobutylpyrimidine dimers in these cells, inhibits their production of immunosuppressive cytokines, including interleukin 10. Application of these liposomes to murine skin in vivo also reduced the induction of interleukin 10 by UV irradiation, whereas liposomes containing heat-inactivated T4 endonuclease V were ineffective. These results support our hypothesis that unrepaired DNA damage in the skin activates the production of cytokines that down-regulate immune responses initiated at distant sites.
Resumo:
Tumors express peptide antigens capable of being recognized by tumor-specific cytotoxic T lymphocytes (CTL). Immunization of mice with a carcinogen-induced colorectal tumor, CT26, engineered to secrete granulocyte/macrophage colony-stimulating factor, routinely generated both short-term and long-term CTL lines that not only lysed the parental tumor in vitro, but also cured mice of established tumor following adoptive transfer in vivo. When either short-term or long-term CTL lines were used to screen peptides isolated from CT26, one reverse-phase high performance liquid chromatography peptide fraction consistently sensitized a surrogate target for specific lysis. The bioactivity remained localized within one fraction following multiple purification procedures, indicating that virtually all of the CT26-specific CTL recognized a single peptide. This result contrasts with other tumor systems, where multiple bioactive peptide fractions have been detected. The bioactive peptide was identified as a nonmutated nonamer derived from the envelope protein (gp70) of an endogenous ecotropic murine leukemia provirus. Adoptive transfer with CTL lines specific for this antigen demonstrated that this epitope represents a potent tumor rejection antigen. The selective expression of this antigen in multiple non-viral-induced tumors provides evidence for a unique class of shared immunodominant tumor associated antigens as targets for antitumor immunity.