100 resultados para Heat-shock proteins


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spraying mustard (Sinapis alba L.) seedlings with salicylic acid (SA) solutions between 10 and 500 μm significantly improved their tolerance to a subsequent heat shock at 55°C for 1.5 h. The effects of SA were concentration dependent, with higher concentrations failing to induce thermotolerance. The time course of thermotolerance induced by 100 μm SA was similar to that obtained with seedlings acclimated at 45°C for 1 h. We examined the hypothesis that induced thermotolerance involved H2O2. Heat shock at 55°C caused a significant increase in endogenous H2O2 and reduced catalase activity. A peak in H2O2 content was observed within 5 min of either SA treatment or transfer to the 45°C acclimation temperature. Between 2 and 3 h after SA treatment or heat acclimation, both H2O2 and catalase activity significantly decreased below control levels. The lowered H2O2 content and catalase activity occurred in the period of maximum thermoprotection. It is suggested that thermoprotection obtained either by spraying SA or by heat acclimation may be achieved by a common signal transduction pathway involving an early increase in H2O2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Escherichia coli RTEM beta-lactamase reversibly forms a stable complex with GroEL, devoid of any enzymatic activity, at 48 degrees C. When beta-lactamase is diluted from this complex into denaturant solution, its unfolding rate is identical to that from the native state, while the unfolding rate from the molten globule state is too fast to be measured. Electrospray mass spectrometry shows that the rate of proton exchange in beta-lactamase in the complex at 48 degrees C is slower than in the absence of GroEL at the same temperature, and resembles the exchange of the native state at 25 degrees C. Similarly, the final number of protected deuterons is higher in the presence of GroEL than in its absence. We conclude that, for beta-lactamase, a state with significant native structure is bound to GroEL. Thus, different proteins are recognized by GroEL in very different states, ranging from totally unfolded to native-like, and this recognition may depend on which state can provide sufficient accessible hydrophobic amino acids in a suitably clustered arrangement. Reversible binding of native-like states with hydrophobic patches may be an important property of GroEL to protect the cell from aggregating protein after heat-shock.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stress response promoter element (STRE) confers increased transcription to a set of genes following environmental or metabolic stress in Saccharomyces cerevisiae. A lambda gt11 library was screened to isolate clones encoding STRE-binding proteins, and one such gene was identified as MSN2, which encoded a zinc-finger transcriptional activator. Disruption of the MSN2 gene abolished an STRE-binding activity in crude extracts as judged by both gel mobility-shift and Southwestern blot experiments, and overexpression of MSN2 intensified this binding activity. Northern blot analysis demonstrated that for the known or suspected STRE-regulated genes DDR2, CTT1, HSP12, and TPS2, transcript induction was impaired following heat shock or DNA damage treatment in the msn2-disrupted strain and was constitutively activated in a strain overexpressing MSN2. Furthermore, heat shock induction of a STRE-driven reporter gene was reduced more than 6-fold in the msn2 strain relative to wild-type cells. Taken together, these data indicate that Msn2p is the transcription factor that activates STRE-regulated genes in response to stress. Whereas nearly 85% of STRE-mediated heat shock induction was MSN2 dependent, there was significant MSN2-independent expression. We present evidence that the MSN2 homolog, MSN4, can partially replace MSN2 for transcriptional activation following stress. Moreover, our data provides evidence for the involvement of additional transcription factors in the yeast multistress response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recombination repair protein 1 (Rrp1) includes a C-terminal region homologous to several DNA repair proteins, including Escherichia coli exonuclease III and human APE, that repair oxidative and alkylation damage to DNA. The nuclease activities of Rrp1 include apurinic/apyrimidinic endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-exonuclease. As shown previously, the C-terminal nuclease region of Rrp1 is sufficient to repair oxidative- and alkylation-induced DNA damage in repair-deficient E. coli mutants. DNA strand-transfer and single-stranded DNA renaturation activities are associated with the unique N-terminal region of Rrp1, which suggests possible additional functions that include recombinational repair or homologous recombination. By using the Drosophila w/w+ mosaic eye system, which detects loss of heterozygosity as changes in eye pigmentation, somatic mutation and recombination frequencies were determined in transgenic flies overexpressing wild-type Rrp1 protein from a heat-shock-inducible transgene. A large decrease in mosaic clone frequency is observed when Rrp1 overexpression precedes treatment with gamma-rays, bleomycin, or paraquat. In contrast, Rrp1 overexpression does not alter the spot frequency after treatment with the alkylating agents methyl methanesulfonate or methyl nitrosourea. A reduction in mosaic clone frequency depends on the expression of the Rrp1 transgene and on the nature of the induced DNA damage. These data suggest a lesion-specific involvement of Rrp1 in the repair of oxidative DNA damage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Induction of Drosophila hsp70 protein was detected during aging in flight muscle and leg muscle in the absence of heat shock, using an hsp70-specific monoclonal antibody, and in transgenic flies containing hsp70-beta-galactosidase fusion protein reporter constructs. While hsp70 and reporter proteins were induced during aging, hsp70 message levels were not, indicating that aging-specific induction is primarily posttranscriptional. In contrast, hsp22 and hsp23 were found to be induced during aging at the RNA level and with a broader tissue distribution. The same muscle-specific hsp70 reporter expression pattern was observed in young flies mutant for catalase (H2O2:H2O2 oxidoreductase, EC 1.11.1.6). In catalase (cat) hypomorphic lines where flies survived to older ages, the time course of hsp70 reporter expression during aging was accelerated, and the initial and ultimate levels of expression were increased. The hsp70 reporter was also induced in young flies mutant for copper/zinc superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1). Taken together, the results suggest that aging-specific hsp70 expression may be a result of oxidative damage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two interacting heat shock cognate proteins in the lumen of the yeast endoplasmic reticulum (ER), Sec63p and BiP (Kar2p), are required for posttranslational translocation of yeast alpha-factor precursor in vitro. To investigate the role of these proteins in cotranslational translocation, we examined the import of invertase into wild-type, sec63, and kar2 mutant yeast membranes. We found that Sec63p and Kar2p are necessary for both co- and posttranslational translocation in yeast. Several kar2 mutants, one of which had normal ATPase activity, were defective in cotranslational translocation of invertase. We conclude that the requirement for BiP/Kar2p, which is not seen in a reaction reconstituted with pure mammalian membrane proteins [Görlich, D. & Rapoport, T.A. (1993) Cell 75, 615-630], is not due to a distinction between cotranslational translocation in mammalian cells and posttranslational translocation in yeast cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant defense against microbial pathogens and herbivores relies heavily on the induction of defense proteins and low molecular weight antibiotics. The signals between perception of the aggression, gene activation, and the subsequent biosynthesis of secondary compounds are assumed to be pentacylic oxylipin derivatives. The rapid, but transient, synthesis of cis-jasmonic acid was demonstrated after insect attack on a food plant and by microbial elicitor addition to plant suspension cultures. This effect is highly specific and not caused by a number of environmental stresses such as light, heavy metals, or cold or heat shock. Elicitation of Eschscholtzia cell cultures also led to a rapid alkalinization of the growth medium prior to jasmonate formation. Inhibition of this alkalinization process by the protein kinase inhibitor staurosporine also inhibited jasmonate formation. The induction of specific enzymes in the benzo[c]phenanthridine alkaloid pathway leading to the antimicrobial sanguinarine was induced to a qualitatively and quantitatively similar extent by fungal elicitor, methyl jasmonate, and its linolenic acid-derived precursor 12-oxophytodienoic acid. It is herein proposed that a second oxylipid cascade may exist in plants starting from linoleic acid via 15,16-dihydro-12-oxophytodienoic acid to 9,10-dihydrojasmonate. Experiments with synthetic trihomojasmonate demonstrated that beta-oxidation is not a prerequisite for biological activity and that 12-oxophytodienoic acid and derivatives are most likely fully active as signal transducers. Octadecanoic acid-derived compounds are essential elements in modulating the synthesis of antibiotic compounds and are thus integral to plant defense.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stathmin is a ubiquitous, cytosolic 19-kDa protein, which is phosphorylated on up to four sites in response to many regulatory signals within cells. Its molecular characterization indicates a functional organization including an N-terminal regulatory domain that bears the phosphorylation sites, linked to a putative alpha-helical binding domain predicted to participate in coiled-coil, protein-protein interactions. We therefore proposed that stathmin may play the role of a relay integrating diverse intracellular regulatory pathways; its action on various target proteins would be a function of its combined phosphorylation state. To search for such target proteins, we used the two-hybrid screen in yeast, with stathmin as a "bait." We isolated and characterized four cDNAs encoding protein domains that interact with stathmin in vivo. One of the corresponding proteins was identified as BiP, a member of the hsp70 heat-shock protein family. Another is a previously unidentified, putative serine/threonine kinase, KIS, which might be regulated by stathmin or, more likely, be part of the kinases controlling its phosphorylation state. Finally, two clones code for subdomains of two proteins, CC1 and CC2, predicted to form alpha-helices participating in coiled-coil interacting structures. Their isolation by interaction screening further supports our model for the regulatory function of stathmin through coiled-coil interactions with diverse downstream targets via its presumed alpha-helical binding domain. The molecular and biological characterization of KIS, CC1, and CC2 proteins will give further insights into the molecular functions and mechanisms of action of stathmin as a relay of integrated intracellular regulatory pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

STAT1 is an essential transcription factor for macrophage activation by IFN-γ and requires phosphorylation of the C-terminal Ser727 for transcriptional activity. In macrophages, Ser727 phosphorylation in response to bacterial lipopolysaccharide (LPS), UV irradiation, or TNF-α occurred through a signaling path sensitive to the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 whereas IFN-γ-mediated Ser727 phosphorylation was not inhibited by the drug. Consistently, SB203580 did not affect IFN-γ-mediated, Stat1-dependent transcription but inhibited its enhancement by LPS. Furthermore, LPS, UV irradiation, and TNF-α caused activation of p38 MAPK whereas IFN-γ did not. An essential role for p38 MAPK activity in STAT1 Ser727 phosphorylation was confirmed by using cells expressing an SB203580-resistant p38 MAPK. In such cells, STAT1 Ser727 phosphorylation in response to UV irradiation was found to be SB203580 insensitive. Targeted disruption of the mapkap-k2 gene, encoding a kinase downstream of p38 MAPK with a key role in LPS-stimulated TNF-α production and stress-induced heat shock protein 25 phosphorylation, was without a significant effect on UV-mediated Ser727 phosphorylation. The recombinant Stat1 C terminus was phosphorylated in vitro by p38MAPKα and β but not by MAPK-activated protein kinase 2. Janus kinase 2 activity, previously reported to be required for IFN-γ-mediated Ser727 phosphorylation, was not needed for LPS-mediated Ser727 phosphorylation, and activation of Janus kinase 2 did not cause the appearance of STAT1 Ser727 kinase activity. Our data suggest that STAT1 is phosphorylated at Ser727 by a stress-activated signaling pathway either through p38 MAPK directly or through an unidentified kinase downstream of p38MAPK.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FKBP52 (HSP56, p59, HBI) is the 59-kDa immunosuppressant FK506-binding protein and has peptidyl prolyl isomerase as well as a chaperone-like activity in vitro. FKBP52 associates with the heat shock protein HSP90 and is included in the steroid hormone receptor complexes in vivo. FKBP52 possesses a well conserved phosphorylation site for casein kinase II (CK2) that was previously shown to be associated with HSP90. Here we examined whether FKBP52 is phosphorylated by CK2 both in vivo and in vitro. Recombinant rabbit FKBP52 was phosphorylated by purified CK2. We expressed and purified deletion mutants of FKBP52 to determine the site(s) phosphorylated by CK2. Thr-143 in the hinge I region was identified as the major phosphorylation site for CK2. A synthetic peptide corresponding to this region was phosphorylated by CK2, and the peptide competitively inhibited the phosphorylation of other substrates by CK2. The [32P]phosphate labeling of FKBP52-expressing cells revealed that the same site is also phosphorylated in vivo. FK506 binding to FKBP52 did not affect the phosphorylation by CK2 and, conversely, the FK506-binding activity of FKBP52 was not affected by the phosphorylation. Most importantly, CK2-phosphorylated FKBP52 did not bind to HSP90. These results indicate that CK2 phosphorylates FKBP52 both in vitro and in vivo and thus may regulate the protein composition of chaperone-containing complexes such as those of steroid receptors and certain protein kinases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fission yeast Sty1 mitogen-activated protein (MAP) kinase (MAPK) and its activator the Wis1 MAP kinase kinase (MAPKK) are required for cell cycle control, initiation of sexual differentiation, and protection against cellular stress. Like the mammalian JNK/SAPK and p38/CSBP1 MAPKs, Sty1 is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, UV light, menadione, heat shock, and the protein synthesis inhibitor anisomycin. We have recently identified two upstream regulators of the Wis1 MAPKK, namely the Wak1 MAPKKK and the Mcs4 response regulator. Cells lacking Mcs4 or Wak1, however, are able to proliferate under stressful conditions and undergo sexual differentiation, suggesting that additional pathway(s) control the Wis1 MAPKK. We now show that this additional signal information is provided, at least in part, by the Win1 mitotic regulator. We show that Wak1 and Win1 coordinately control activation of Sty1 in response to multiple environmental stresses, but that Wak1 and Win1 perform distinct roles in the control of Sty1 under poor nutritional conditions. Our results suggest that the stress-activated Sty1 MAPK integrates information from multiple signaling pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glutaredoxins are small heat-stable proteins that act as glutathione-dependent disulfide oxidoreductases. Two genes, designated GRX1 and GRX2, which share 40–52% identity and 61–76% similarity with glutaredoxins from bacterial and mammalian species, were identified in the yeast Saccharomyces cerevisiae. Strains deleted for both GRX1 and GRX2 were viable but lacked heat-stable oxidoreductase activity using β-hydroxyethylene disulfide as a substrate. Surprisingly, despite the high degree of homology between Grx1 and Grx2 (64% identity), the grx1 mutant was unaffected in oxidoreductase activity, whereas the grx2 mutant displayed only 20% of the wild-type activity, indicating that Grx2 accounted for the majority of this activity in vivo. Expression analysis indicated that this difference in activity did not arise as a result of differential expression of GRX1 and GRX2. In addition, a grx1 mutant was sensitive to oxidative stress induced by the superoxide anion, whereas a strain that lacked GRX2 was sensitive to hydrogen peroxide. Sensitivity to oxidative stress was not attributable to altered glutathione metabolism or cellular redox state, which did not vary between these strains. The expression of both genes was similarly elevated under various stress conditions, including oxidative, osmotic, heat, and stationary phase growth. Thus, Grx1 and Grx2 function differently in the cell, and we suggest that glutaredoxins may act as one of the primary defenses against mixed disulfides formed following oxidative damage to proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The heat-shock protein 90 (Hsp90) is a cytosolic molecular chaperone that is highly abundant even at normal temperature. Specific functions for Hsp90 have been proposed based on the characterization of its interactions with certain transcription factors and kinases including Raf in vertebrates and flies. We therefore decided to address the role of Hsp90 for MAP kinase pathways in the budding yeast, an organism amenable to both genetic and biochemical analyses. We found that both basal and induced activities of the pheromone-signaling pathway depend on Hsp90. Signaling is defective in strains expressing low levels or point mutants of yeast Hsp90 (Hsp82), or human Hsp90β instead of the wild-type protein. Ste11, a yeast equivalent of Raf, forms complexes with wild-type Hsp90 and depends on Hsp90 function for accumulation. For budding yeast, Ste11 represents the first identified endogenous “substrate” of Hsp90. Moreover, Hsp90 functions in steroid receptor and pheromone signaling can be genetically separated as the Hsp82 point mutant T525I and the human Hsp90β are specifically defective for the former and the latter, respectively. These findings further corroborate the view that molecular chaperones must also be considered as transient or stable components of signal transduction pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The small fourth chromosome of Drosophila melanogaster (3.5% of the genome) presents a puzzle. Cytological analysis suggests that the bulk of the fourth, including the portion that appears banded in the polytene chromosomes, is heterochromatic; the banded region includes blocks of middle repetitious DNA associated with heterochromatin protein 1 (HP1). However, genetic screens indicate 50–75 genes in this region, a density similar to that in other euchromatic portions of the genome. Using a P element containing an hsp70-white gene and a copy of hsp26 (marked with a fragment of plant DNA designated pt), we have identified domains that allow for full expression of the white marker (R domains), and others that induce a variegating phenotype (V domains). In the former case, the hsp26-pt gene shows an accessibility and heat-shock-inducible activity similar to that seen in euchromatin, whereas in the latter case, accessibility and inducible expression are reduced to levels typical of heterochromatin. Mapping by in situ hybridization and by hybridization of flanking DNA sequences to a collection of cosmid and bacterial artificial chromosome clones shows that the R domains (euchromatin-like) and V domains (heterochromatin-like) are interspersed. Examination of the effect of genetic modifiers on the variegating transgenes shows some differences among these domains. The results suggest that heterochromatic and euchromatic domains are interspersed and closely associated within this 1.2-megabase region of the genome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of the abundant stress protein Hsp90 in protecting cells against stress-induced damage is not well understood. The recent discovery that a class of ansamycin antibiotics bind specifically to Hsp90 allowed us to address this problem from a new angle. We find that mammalian Hsp90, in cooperation with Hsp70, p60, and other factors, mediates the ATP-dependent refolding of heat-denatured proteins, such as firefly luciferase. Failure to refold results in proteolysis. The ansamycins inhibit refolding, both in vivo and in a cell extract, by preventing normal dissociation of Hsp90 from luciferase, causing its enhanced degradation. This mechanism also explains the ansamycin-induced proteolysis of several protooncogenic protein kinases, such as Raf-1, which interact with Hsp90. We propose that Hsp90 is part of a quality control system that facilitates protein refolding or degradation during recovery from stress. This function is used by a limited set of signal transduction molecules for their folding and regulation under nonstress conditions. The ansamycins shift the mode of Hsp90 from refolding to degradation, and this effect is probably amplified for specific Hsp90 substrates.