126 resultados para HeLa
Resumo:
The effects of oleamide, an amidated lipid isolated from the cerebrospinal fluid of sleep-deprived cats, on serotonin receptor-mediated responses were investigated in cultured mammalian cells. In rat P11 cells, which endogenously express the 5-hydroxytryptamine2A (5HT2A) receptor, oleamide significantly potentiated 5HT-induced phosphoinositide hydrolysis. In HeLa cells expressing the 5HT7 receptor subtype, oleamide caused a concentration-dependent increase in cAMP accumulation but with lower efficacy than that observed by 5HT. This effect was not observed in untransfected HeLa cells. Clozapine did not prevent the increase in cAMP elicited by oleamide, and ketanserin caused an ≈65% decrease. In the presence of 5HT, oleamide had the opposite effect on cAMP, causing insurmountable antagonism of the concentration-effect curve to 5HT, but had no effect on cAMP levels elicited by isoproterenol or forskolin. These results indicate that oleamide can modulate 5HT-mediated signal transduction at different subtypes of mammalian 5HT receptors. Additionally, our data indicate that oleamide acts at an apparent allosteric site on the 5HT7 receptor and elicits functional responses via activation of this site. This represents a unique mechanism of activation for 5HT G protein-coupled receptors and suggests that G protein-coupled neurotransmitter receptors may act like their iontropic counterparts (i.e., γ-aminobutyric acid type A receptors) in that there may be several binding sites on the receptor that regulate functional activity with varying efficacies.
Resumo:
The HIV-1 transcript is alternatively spliced to over 30 different mRNAs. Whether RNA secondary structure can influence HIV-1 RNA alternative splicing has not previously been examined. Here we have determined the secondary structure of the HIV-1/BRU RNA segment, containing the alternative A3, A4a, A4b, A4c and A5 3′ splice sites. Site A3, required for tat mRNA production, is contained in the terminal loop of a stem–loop structure (SLS2), which is highly conserved in HIV-1 and related SIVcpz strains. The exon splicing silencer (ESS2) acting on site A3 is located in a long irregular stem–loop structure (SLS3). Two SLS3 domains were protected by nuclear components under splicing condition assays. One contains the A4c branch points and a putative SR protein binding site. The other one is adjacent to ESS2. Unexpectedly, only the 3′ A residue of ESS2 was protected. The suboptimal A3 polypyrimidine tract (PPT) is base paired. Using site-directed mutagenesis and transfection of a mini-HIV-1 cDNA into HeLa cells, we found that, in a wild-type PPT context, a mutation of the A3 downstream sequence that reinforced SLS2 stability decreased site A3 utilization. This was not the case with an optimized PPT. Hence, sequence and secondary structure of the PPT may cooperate in limiting site A3 utilization.
Resumo:
Ets factors play a critical role in oncogenic Ras- and growth factor-mediated regulation of the proximal rat prolactin (rPRL) promoter in pituitary cells. The rPRL promoter contains two key functional Ets binding sites (EBS): a composite EBS/Pit-1 element located at –212 and an EBS that co-localizes with the basal transcription element (BTE, or A-site) located at –96. Oncogenic Ras exclusively signals to the –212 site, which we have named the Ras response element (RRE); whereas the response of multiple growth factors (FGFs, EGF, IGF, insulin and TRH) maps to both EBSs. Although Ets-1 and GA binding protein (GABP) have been implicated in the Ras and insulin responses, respectively, the precise identity of the pituitary Ets factors that specifically bind to the RRE and BTE sites remains unknown. In order to identify the Ets factor(s) present in GH4 and GH3 nuclear extracts (GH4NE and GH3NE) that bind to the EBSs contained in the RRE and BTE, we used EBS-RRE and BTE oligonucleotides in electrophoretic mobility shift assays (EMSAs), antibody supershift assays, western blot analysis of partially purified fractions and UV-crosslinking studies. EMSAs, using either the BTE or EBS-RRE probes, identified a specific protein–DNA complex, designated complex A, which contains an Ets factor as determined by oligonucleotide competition studies. Using western blot analysis of GH3 nuclear proteins that bind to heparin–Sepharose, we have shown that Ets-1 and GABP, which are MAP kinase substrates, co-purify with complex A, and supershift analysis with specific antisera revealed that complex A contains Ets-1, GABPα and GABPβ1. In addition, we show that recombinant full-length Ets-1 binds equivalently to BTE and EBS-RRE probes, while recombinant GABPα/β preferentially binds to the BTE probe. Furthermore, comparing the DNA binding of GH4NE containing both Ets-1 and GABP and HeLa nuclear extracts devoid of Ets-1 but containing GABP, we were able to show that the EBS-RRE preferentially binds Ets-1, while the BTE binds both GABP and Ets-1. Finally, UV-crosslinking experiments with radiolabeled EBS-RRE and BTE oligonucleotides showed that these probes specifically bind to a protein of ∼64 kDa, which is consistent with binding to Ets-1 (54 kDa) and/or the DNA binding subunit of GABP, GABPα (57 kDa). These studies show that endogenous, pituitary-derived GABP and Ets-1 bind to the BTE, whereas Ets-1 preferentially binds to the EBS-RRE. Taken together, these data provide important insights into the mechanisms by which the combination of distinct Ets members and EBSs transduce differential growth factor responses.
Resumo:
Pierisin-1 is an 850-aa cytotoxic protein found in the cabbage butterfly, Pieris rapae, and has been suggested to consist of an N-terminal region with ADP-ribosyltransferase domain and of a C-terminal region that might have a receptor-binding domain. To elucidate the role of each region, we investigated the functions of various fragments of pierisin-1. In vitro expressed polypeptide consisting of amino acid residues 1–233 or 234–850 of pierisin-1 alone did not show cytotoxicity against human cervical carcinoma HeLa cells. However, the presence of both polypeptides in the culture medium showed some of the original cytotoxic activity. Introduction of the N-terminal polypeptide alone by electroporation also induced cell death in HeLa cells, and even in the mouse melanoma MEB4 cells insensitive to pierisin-1. Thus, the N-terminal region has a principal role in the cytotoxicity of pierisin-1 inside mammalian cells. Analyses of incorporated pierisin-1 indicated that the entire protein, regardless of whether it consisted of a single polypeptide or two separate N- and C-terminal polypeptides, was incorporated into HeLa cells. However, neither of the terminal polypeptides was incorporated when each polypeptide was present separately. These findings indicate that the C-terminal region is important for the incorporation of pierisin-1. Moreover, presence of receptor for pierisin-1 in the lipid fraction of cell membrane was suggested. The cytotoxic effects of pierisin-1 were enhanced by previous treatment with trypsin, producing “nicked” pierisin-1. Generation of the N-terminal fragment in HeLa cells was detected after application of intact entire molecule of pierisin-1. From the above observations, it is suggested that after incorporation of pierisin-1 into the cell by interaction of its C-terminal region with the receptor in the cell membrane, the entire protein is cleaved into the N- and C-terminal fragments with intracellular protease, and the N-terminal fragment then exhibits cytotoxicity.
Resumo:
The cell cycle-dependent, ordered assembly of protein prereplicative complexes suggests that eukaryotic replication origins determine when genomic replication initiates. By comparison, the factors that determine where replication initiates relative to the sites of prereplicative complex formation are not known. In the human globin gene locus previous work showed that replication initiates at a single site 5′ to the β-globin gene when protein synthesis is inhibited by emetine. The present study has examined the pattern of initiation around the genetically defined β-globin replicator in logarithmically growing HeLa cells, using two PCR-based nascent strand assays. In contrast to the pattern of initiation detected in emetine-treated cells, analysis of the short nascent strands at five positions spanning a 40 kb globin gene region shows that replication initiates at more than one site in non-drug-treated cells. Quantitation of nascent DNA chains confirmed that replication begins at several locations in this domain, including one near the initiation region (IR) identified in emetine-treated cells. However, the abundance of short nascent strands at another initiation site ∼20 kb upstream is ∼4-fold as great as that at the IR. The latter site abuts an early S phase replicating fragment previously defined at low resolution in logarithmically dividing cells.
Resumo:
Measurement of 8-hydroxy-2′-deoxyguanosine (8-OH-dGuo) in DNA by high-performance liquid chromatography/mass spectrometry (LC/MS) was studied. A methodology was developed for separation by LC of 8-OH-dGuo from intact and modified nucleosides in DNA hydrolyzed by a combination of four enzymes: DNase I, phosphodiesterases I and II and alkaline phosphatase. The atmospheric pressure ionization-electrospray process was used for mass spectral measurements. A stable isotope-labeled analog of 8-OH-dGuo was used as an internal standard for quantification by isotope-dilution MS (IDMS). Results showed that LC/IDMS with selected ion-monitoring (SIM) is well suited for identification and quantification of 8-OH-dGuo in DNA at background levels and in damaged DNA. The sensitivity level of LC/IDMS-SIM was found to be comparable to that reported previously using LC-tandem MS (LC/MS/MS). It was found that approximately five lesions per 106 DNA bases can be detected using amounts of DNA as low as 2 µg. The results also suggest that this lesion may be quantified in DNA at levels of one lesion per 106 DNA bases, or even lower, when more DNA is used. Up to 50 µg of DNA per injection were used without adversely affecting the measurements. Gas chromatography/isotope-dilution MS with selected-ion monitoring (GC/IDMS-SIM) was also used to measure this compound in DNA following its removal from DNA by acidic hydrolysis or by hydrolysis with Escherichia coli Fpg protein. The background levels obtained by LC/IDMS-SIM and GC/IDMS-SIM were almost identical. Calf thymus DNA and DNA isolated from cultured HeLa cells were used for this purpose. This indicates that these two techniques can provide similar results in terms of the measurement of 8-OH-dGuo in DNA. In addition, DNA in buffered aqueous solution was damaged by ionizing radiation at different radiation doses and analyzed by LC/IDMS-SIM and GC/IDMS-SIM. Again, similar results were obtained by the two techniques. The sensitivity of GC/MS-SIM for 7,8-dihydro-8-oxoguanine was also examined and found to be much greater than that of LC/MS-SIM and the reported sensitivity of LC/MS/MS for 8-OH-dGuo. Taken together, the results unequivocally show that LC/IDMS-SIM is well suited for sensitive and accurate measurement of 8-OH-dGuo in DNA and that both LC/IDMS-SIM and GC/IDMS-SIM can provide similar results.
Resumo:
To visualize Ca2+-dependent protein–protein interactions in living cells by fluorescence readouts, we used a circularly permuted green fluorescent protein (cpGFP), in which the amino and carboxyl portions had been interchanged and reconnected by a short spacer between the original termini. The cpGFP was fused to calmodulin and its target peptide, M13. The chimeric protein, which we have named “pericam,” was fluorescent and its spectral properties changed reversibly with the amount of Ca2+, probably because of the interaction between calmodulin and M13 leading to an alteration of the environment surrounding the chromophore. Three types of pericam were obtained by mutating several amino acids adjacent to the chromophore. Of these, “flash-pericam” became brighter with Ca2+, whereas “inverse-pericam” dimmed. On the other hand, “ratiometric-pericam” had an excitation wavelength changing in a Ca2+-dependent manner. All of the pericams expressed in HeLa cells were able to monitor free Ca2+ dynamics, such as Ca2+ oscillations in the cytosol and the nucleus. Ca2+ imaging using high-speed confocal line-scanning microscopy and a flash-pericam allowed to detect the free propagation of Ca2+ ions across the nuclear envelope. Then, free Ca2+ concentrations in the nucleus and mitochondria were simultaneously measured by using ratiometric-pericams having appropriate localization signals, revealing that extra-mitochondrial Ca2+ transients caused rapid changes in the concentration of mitochondrial Ca2+. Finally, a “split-pericam” was made by deleting the linker in the flash-pericam. The Ca2+-dependent interaction between calmodulin and M13 in HeLa cells was monitored by the association of the two halves of GFP, neither of which was fluorescent by itself.
Resumo:
The Nup98 gene codes for several alternatively spliced protein precursors. Two in vitro translated and autoproteolytically cleaved precursors yielded heterodimers of Nup98-6kDa peptide and Nup98-Nup96. TPR (translocated promoter region) is a protein that forms filamentous structures extending from nuclear pore complexes (NPCs) to intranuclear sites. We found that in vitro translated TPR bound to in vitro translated Nup98 and, via Nup98, to Nup96. Double-immunofluorescence microscopy with antibodies to TPR and Nup98 showed colocalization. In confocal sections the nucleolus itself was only weakly stained but there was intensive perinucleolar staining. Striking spike-like structures emanated from this perinucleolar ring and attenuated into thinner structures as they extended to the nuclear periphery. This characteristic staining pattern of the TPR network was considerably enhanced when a myc-tagged pyruvate kinase-6kDa fusion protein was overexpressed in HeLa cells. Double-immunoelectron microscopy of these cells using anti-myc and anti-TPR antibodies and secondary gold-coupled antibodies yielded row-like arrangements of gold particles. Taken together, the immunolocalization data support previous electron microscopical data, suggesting that TPR forms filaments that extend from the NPC to the nucleolus. We discuss the possible implications of the association of Nup98 with this intranuclear TPR network for an intranuclear phase of transport.
Resumo:
Nuclear speckles (speckles) represent a distinct nuclear compartment within the interchromatin space and are enriched in splicing factors. They have been shown to serve neighboring active genes as a reservoir of these factors. In this study, we show that, in HeLa cells, the (pre)spliceosomal assembly on precursor mRNA (pre-mRNA) is associated with the speckles. For this purpose, we used microinjection of splicing competent and mutant adenovirus pre-mRNAs with differential splicing factor binding, which form different (pre)spliceosomal complexes and followed their sites of accumulation. Splicing competent pre-mRNAs are rapidly targeted into the speckles, but the targeting is temperature-dependent. The polypyrimidine tract sequence is required for targeting, but, in itself, is not sufficient. The downstream flanking sequences are particularly important for the targeting of the mutant pre-mRNAs into the speckles. In supportive experiments, the behavior of the speckles was followed after the microinjection of antisense deoxyoligoribonucleotides complementary to the specific domains of snRNAs. Under these latter conditions prespliceosomal complexes are formed on endogenous pre-mRNAs. We conclude that the (pre)spliceosomal complexes on microinjected pre-mRNA are formed inside the speckles. Their targeting into and accumulation in the speckles is a result of the cumulative loading of splicing factors to the pre-mRNA and the complexes formed give rise to the speckled pattern observed.
Resumo:
Phocein is a widely expressed, highly conserved intracellular protein of 225 amino acids, the sequence of which has limited homology to the ς subunits from clathrin adaptor complexes and contains an additional stretch bearing a putative SH3-binding domain. This sequence is evolutionarily very conserved (80% identity between Drosophila melanogaster and human). Phocein was discovered by a yeast two-hybrid screen using striatin as a bait. Striatin, SG2NA, and zinedin, the three mammalian members of the striatin family, are multimodular, WD-repeat, and calmodulin-binding proteins. The interaction of phocein with striatin, SG2NA, and zinedin was validated in vitro by coimmunoprecipitation and pull-down experiments. Fractionation of brain and HeLa cells showed that phocein is associated with membranes, as well as present in the cytosol where it behaves as a protein complex. The molecular interaction between SG2NA and phocein was confirmed by their in vivo colocalization, as observed in HeLa cells where antibodies directed against either phocein or SG2NA immunostained the Golgi complex. A 2-min brefeldin A treatment of HeLa cells induced the redistribution of both proteins. Immunocytochemical studies of adult rat brain sections showed that phocein reactivity, present in many types of neurons, is strictly somato-dendritic and extends down to spines, just as do striatin and SG2NA.
Resumo:
A recombinant adenovirus (rAd) expressing Cre recombinase derived from bacteriophage P1 has already been extensively used for the conditional gene activation and inactivation strategies in mammalian systems. In this study, we generated AxCAFLP, a rAd expressing FLP recombinase derived from Saccharomyces cerevisiae and carried out quantitative comparisons with Cre-expressing rAd in both in vitro and in cultured cells to provide another efficient gene regulation system in mammalian cells. In the in vitro experiments, the relative recombination efficiency of FLP expressed in 293 cells infected with FLP-expressing rAd was approximately one-thirtieth that of Cre even at 30°C, the optimum temperature for FLP activity, and was approximately one-ninetieth at 37°C. Co-infection experiments in HeLa cells using a target rAd conditionally expressing LacZ under the control of FLP showed that an FLP-expressing rAd, infected at a multiplicity of infection (MOI) of 5, was able to activate the transgene in almost 100% of HeLa cells whereas the Cre-expressing rAd was sufficient at an MOI of 0.2. Since an MOI of 5 is ordinarily used in rAd experiments, these results showed that the FLP-expressing rAd is useful for gene activation strategies and is probably applicable to a sequential gene regulation system in combination with Cre-expressing rAd in mammalian cells.
Resumo:
We have cloned, expressed and purified a hexameric human DNA helicase (hHcsA) from HeLa cells. Sequence analysis demonstrated that the hHcsA has strong sequence homology with DNA helicase genes from Saccharomyces cerevisiae and Caenorhabditis elegans, indicating that this gene appears to be well conserved from yeast to human. The hHcsA gene was cloned and expressed in Escherichia coli and purified to homogeneity. The expressed protein had a subunit molecular mass of 116 kDa and analysis of its native molecular mass by size exclusion chromatography suggested that hHcsA is a hexameric protein. The hHcsA protein had a strong DNA-dependent ATPase activity that was stimulated ≥5-fold by single-stranded DNA (ssDNA). Human hHcsA unwinds duplex DNA and analysis of the polarity of translocation demonstrated that the polarity of DNA unwinding was in a 5′→3′ direction. The helicase activity was stimulated by human and yeast replication protein A, but not significantly by E.coli ssDNA-binding protein. We have analyzed expression levels of the hHcsA gene in HeLa cells during various phases of the cell cycle using in situ hybridization analysis. Our results indicated that the expression of the hHcsA gene, as evidenced from the mRNA levels, is cell cycle-dependent. The maximal level of hHcsA expression was observed in late G1/early S phase, suggesting a possible role for this protein during S phase and in DNA synthesis.
Resumo:
We attempted to devise a transcription system in which a particular DNA sequence of interest could be inducibly expressed under the control of a modified polymerase III (pol III) promoter. Its activation requires a mutated transcription factor not contained endogenously in human cells. We constructed such a promoter by fusing elements of the β-lactamase gene of Escherichia coli, containing a modified TATA-box and a pol III terminator, to the initiation region of the human U6 gene. This construct functionally resembles a 5′-regulated pol III gene and its transcribed segment can be exchanged for an arbitrary sequence. Its transcription in vitro by pol III requires the same factors as the U6 gene with the major exception that the modified TATA-box of this construct only interacts with a TATA-binding protein (TBP) mutant (TBP-DR2) but not with TBP wild-type (TBPwt). Its transcription therefore requires TBP-DR2 exclusively instead of TBPwt. In order to render the system inducible, we fused the gene coding for TBP-DR2 to a tetracycline control element and stably transfected this new construct into HeLa cells. Induction of such a stable and viable clone with tetracycline resulted in the expression of functional TBP-DR2. This system may conceptually be used in the future to inducibly express an arbitrary DNA sequence in vivo under the control of the above mentioned promoter.
Resumo:
Metaphase checkpoint controls sense abnormalities of chromosome alignment during mitosis and prevent progression to anaphase until proper alignment has been attained. A number of proteins, including mad2, bub1, and bubR1, have been implicated in the metaphase checkpoint control in mammalian cells. Metaphase checkpoints have been shown, in various systems, to read loss of either spindle tension or microtubule attachment at the kinetochore. Characteristically, HeLa cells arrest in metaphase in response to low levels of microtubule inhibitors that leave an intact spindle and a metaphase plate. Here we show that the arrest induced by nanomolar vinblastine correlates with loss of tension at the kinetochore, and that in response the checkpoint proteins bub1 and bubR1 are recruited to the kinetochore but mad2 is not. mad2 remains competent to respond and is recruited at higher drug doses that disrupt spindle association with the kinetochores. Further, although mad2 forms a complex with cdc20, it does not associate with bub1 or bubR1. We conclude that mammalian bub1/bubR1 and mad2 operate as elements of distinct pathways sensing tension and attachment, respectively.
Resumo:
Testicular protein kinase 1 (TESK1) is a serine/threonine kinase with a structure composed of a kinase domain related to those of LIM-kinases and a unique C-terminal proline-rich domain. Like LIM-kinases, TESK1 phosphorylated cofilin specifically at Ser-3, both in vitro and in vivo. When expressed in HeLa cells, TESK1 stimulated the formation of actin stress fibers and focal adhesions. In contrast to LIM-kinases, the kinase activity of TESK1 was not enhanced by Rho-associated kinase (ROCK) or p21-activated kinase, indicating that TESK1 is not their downstream effector. Both the kinase activity of TESK1 and the level of cofilin phosphorylation increased by plating cells on fibronectin. Y-27632, a specific inhibitor of ROCK, inhibited LIM-kinase-induced cofilin phosphorylation but did not affect fibronectin-induced or TESK1-induced cofilin phosphorylation in HeLa cells. Expression of a kinase-negative TESK1 suppressed cofilin phosphorylation and formation of stress fibers and focal adhesions induced in cells plated on fibronectin. These results suggest that TESK1 functions downstream of integrins and plays a key role in integrin-mediated actin reorganization, presumably through phosphorylating and inactivating cofilin. We propose that TESK1 and LIM-kinases commonly phosphorylate cofilin but are regulated in different ways and play distinct roles in actin reorganization in living cells.