90 resultados para HIPPOCAMPAL SLICES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal neurons in culture develop morphological polarity in a sequential pattern; axons form before dendrites. Molecular differences, particularly those of membrane proteins, underlie the functional polarity of these domains, yet little is known about the temporal relationship between membrane protein polarization and morphological polarization. We took advantage of viral expression systems to determine when during development the polarization of membrane proteins arises. All markers were unpolarized in neurons before axonogenesis. In neurons with a morphologically distinguishable axon, even on the first day in culture, both axonal and dendritic proteins were polarized. The degree of polarization at these early stages was somewhat less than in mature cells and varied from cell to cell. The cellular mechanism responsible for the polarization of the dendritic marker protein transferrin receptor (TfR) in mature cells centers on directed transport to the dendritic domain. To examine the relationship between cell surface polarization and transport, we assessed the selectivity of transport by live cell imaging. TfR-green fluorescent protein-containing vesicles were already preferentially transported into dendrites at 2 days, the earliest time point we could measure. The selectivity of transport also varied somewhat among cells, and the amount of TfR-green fluorescent protein fluorescence on intracellular structures within the axon correlated with the amount of cell surface expression. This observation implies that selective microtubule-based transport is the primary mechanism that underlies the polarization of TfR on the cell surface. By 5 days in culture, the extent of polarization on the cell surface and the selectivity of transport reached mature levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen regulates hippocampal dendritic spine density and synapse number in an N-methyl-d-aspartate (NMDA) receptor-dependent manner, and these effects may be of particular importance in the context of age-related changes in endocrine status. We investigated estrogen's effects on axospinous synapse density and the synaptic distribution of the NMDA receptor subunit, NR1, within the context of aging. Although estrogen induced an increase in axospinous synapse density in young animals, it did not alter the synaptic representation of NR1, in that the amount of NR1 per synapse was equivalent across groups. Estrogen replacement in aged female rats failed to increase axospinous synapse density; however, estrogen up-regulated synaptic NR1 compared with aged animals with no estrogen. Therefore, the young and aged hippocampi react differently to estrogen replacement, with the aged animals unable to mount a plasticity response generating additional synapses, yet responsive to estrogen with respect to additional NMDA receptor content per synapse. These findings have important implications for estrogen replacement therapy in the context of aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amnesic patients with early and seemingly isolated hippocampal injury show relatively normal recognition memory scores. The cognitive profile of these patients raises the possibility that this recognition performance is maintained mainly by stimulus familiarity in the absence of recollection of contextual information. Here we report electrophysiological data on the status of recognition memory in one of the patients, Jon. Jon's recognition of studied words lacks the event-related potential (ERP) index of recollection, viz., an increase in the late positive component (500–700 ms), under conditions that elicit it reliably in normal subjects. On the other hand, a decrease of the ERP amplitude between 300 and 500 ms, also reliably found in normal subjects, is well preserved. This so-called N400 effect has been linked to stimulus familiarity in previous ERP studies of recognition memory. In Jon, this link is supported by the finding that his recognized and unrecognized studied words evoked topographically distinct ERP effects in the N400 time window. These data suggest that recollection is more dependent on the hippocampal formation than is familiarity, consistent with the view that the hippocampal formation plays a special role in episodic memory, for which recollection is so critical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress early in postnatal life may result in long-term memory deficits and selective loss of hippocampal neurons. The mechanisms involved are poorly understood, but they may involve molecules and processes in the immature limbic system that are activated by stressful challenges. We report that administration of corticotropin-releasing hormone (CRH), the key limbic stress modulator, to the brains of immature rats reproduced the consequences of early-life stress, reducing memory functions throughout life. These deficits were associated with progressive loss of hippocampal CA3 neurons and chronic up-regulation of hippocampal CRH expression. Importantly, they did not require the presence of stress levels of glucocorticoids. These findings indicate a critical role for CRH in the mechanisms underlying the long-term effects of early-life stress on hippocampal integrity and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal pyramidal cells, receiving domain specific GABAergic inputs, express up to 10 different subunits of the gamma-aminobutyric acid type A (GABAA) receptor, but only 3 different subunits are needed to form a functional pentameric channel. We have tested the hypothesis that some subunits are selectively located at subsets of GABAergic synapses. The alpha 1 subunit has been found in most GABAergic synapses on all postsynaptic domains of pyramidal cells. In contrast, the alpha 2 subunit was located only in a subset of synapses on the somata and dendrites, but in most synapses on axon initial segments innervated by axo-axonic cells. The results demonstrate that molecular specialization in the composition of postsynaptic GABAA receptor subunits parallels GABAergic cell specialization in targeting synapses to a specific domain of postsynaptic cortical neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The requirement for cooperative interactions between multiple synaptic inputs in the induction of long-term potentiation (LTP) and long-term depression (LTD) has been tested at Schaffer collateral synapses with paired recordings from monosynaptically coupled CA3-CA1 cell pairs in rat hippocampal slice cultures. Tetanization of single presynaptic neurons at 50 Hz (repeated 5-7 times for 300-500 ms each) induced only a transient potentiation (< 3 min) of excitatory postsynaptic potentials (EPSPs). Persistent potentiation (> 15 min) was induced only when single presynaptic action potentials were synchronously paired with directly induced postsynaptic depolarizing pulses (repeated 50-100 times). Tetanus-induced potentiation of extracellularly evoked EPSPs lasting > 4 min could only be obtained if the EPSP was > 4 mV. Because unitary EPSP amplitudes average approximately 1 mV, we conclude that high-frequency discharge must occur synchronously] in 4-5 CA3 cells for LTP to be induced in a common postsynaptic CA1 cell. Asynchronous pairing of presynaptic action potentials with postsynaptic depolarizing current pulses (preceding each EPSP by 800 ms) depressed both naive and previously potentiated unitary EPSPs. Likewise, homosynaptic LTD of unitary EPSPs was induced when the presynaptic cell was tetanized at 3 Hz for 3 min, regardless of their amplitude (0.3-3.2 mV). Homosynaptic LTD of extracellularly evoked Schaffer collateral EPSPs < 4 mV could be induced if no inhibitory postsynaptic potential was apparent, but was prevented by eliciting a large inhibitory postsynaptic potential or by injection of hyperpolarizing current in the postsynaptic cell. We conclude that cooperative interactions among multiple excitatory inputs are not required for induction of homosynaptic LTD of unitary EPSPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) channels are Ca(2+)-permeable, nonspecific cation channels that can be activated through direct interaction with cAMP and/or cGMP. Recent electrophysiological evidence for these channels in cultured hippocampal neurons prompted us to investigate the expression of CNG channel genes in hippocampus. PCR amplification detected the expression of transcripts for subunit 1 of both the rod photoreceptor (RCNGC1) and the olfactory receptor cell (OCNGC1) subtype of CNG channel in adult rat hippocampus. In situ hybridization detected expression of both channel subtypes in most principal neurons, including pyramidal cells of the CA1 through CA3 regions and granule cells of the dentate gyrus. From the hybridization patterns, we conclude that the two genes are colocalized in individual neurons. Comparison of the patterns of expression of type 1 cGMP-dependent protein kinase and the CNG channels suggests that hippocampal neurons can respond to changes in cGMP levels with both rapid changes in CNG channel activity and slower changes induced by phosphorylation. Future models of hippocampal function should include CNG channels and their effects on both electrical responses and intracellular Ca2+ levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable evidence exists to support the hypothesis that the hippocampus and related medial temporal lobe structures are crucial for the encoding and storage of information in long-term memory. Few human imaging studies, however, have successfully shown signal intensity changes in these areas during encoding or retrieval. Using functional magnetic resonance imaging (fMRI), we studied normal human subjects while they performed a novel picture encoding task. High-speed echo-planar imaging techniques evaluated fMRI signal changes throughout the brain. During the encoding of novel pictures, statistically significant increases in fMRI signal were observed bilaterally in the posterior hippocampal formation and parahippocampal gyrus and in the lingual and fusiform gyri. To our knowledge, this experiment is the first fMRI study to show robust signal changes in the human hippocampal region. It also provides evidence that the encoding of novel, complex pictures depends upon an interaction between ventral cortical regions, specialized for object vision, and the hippocampal formation and parahippocampal gyrus, specialized for long-term memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite extensive investigation, it remains unclear whether presynaptic and/or postsynaptic modifications are primarily responsible for the expression of long-term potentiation (LTP) in the CA1 region of the hippocampus. Here we address this issue by using techniques that maximize the likelihood of stimulating a single axon and thereby presumably a single synapse before and after the induction of LTP. Several basic properties of synaptic transmission were examined including the probability of neurotransmitter release (Pr), the quantal size (q), and the so-called potency, which is defined as the average size of the synaptic response when release of transmitter does occur. LTP was routinely associated with an increase in potency, whereas increases in Pr alone were not observed. LTP was also reliably induced when baseline Pr was high, indicating that synapses with high Pr can express LTP. These results suggest that the mechanism for the expression of LTP involves an increase in q and is difficult to explain by an increase in Pr alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influx of calcium into the postsynaptic neuron is likely to be an important event in memory formation. Among the mechanisms that nerve cells may use to alter the time course or size of a spike of intracellular calcium are cytosolic calcium binding or "buffering" proteins. To consider the role in memory formation of one of these proteins, calbindin D28K, which is abundant in many neurons, including the CA1 pyramidal cells of the hippocampus, transgenic mice deficient in calbindin D28K have been created. These mice show selective impairments in spatial learning paradigms and fail to maintain long-term potentiation. These results suggest a role for calbindin D28K protein in temporally extending a neuronal calcium signal, allowing the activation of calcium-dependent intracellular signaling pathways underlying memory function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lines of evidence indicate that a modest increase in circulating glucose levels enhances memory. One mechanism underlying glucose effects on memory may be an increase in acetylcholine (ACh) release. The present experiment determined whether enhancement of spontaneous alternation performance by systemic glucose treatment is related to an increase in hippocampal ACh output. Samples of extracellular ACh were assessed at 12-min intervals using in vivo microdialysis with HPLC-EC. Twenty-four minutes after an intraperitoneal injection of saline or glucose (100, 250, or 1000 mg/kg), rats were tested in a four-arm cross maze for spontaneous alternation behavior combined with microdialysis collection. Glucose at 250 mg/kg, but not 100 or 1000 mg/kg, produced an increase in spontaneous alternation scores (69.5%) and ACh output (121.5% versus baseline) compared to alternation scores (44.7%) and ACh output (58.9% versus baseline) of saline controls. The glucose-induced increase in alternation scores and ACh output was not secondary to changes in locomotor activity. Saline and glucose (100-1000 mg/kg) treatment had no effect on hippocampal ACh output when rats remained in the holding chamber. These findings suggest that glucose may enhance memory by directly or indirectly increasing the release of ACh. The results also indicate that hippocampal ACh release is increased in rats performing a spatial task. Moreover, because glucose enhanced ACh output only during behavioral testing, circulating glucose may modulate ACh release only under conditions in which cholinergic cells are activated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Behavioral stress has detrimental effects on subsequent cognitive performance in many species, including humans. For example, humans exposed to stressful situations typically exhibit marked deficits in various learning and memory tasks. However, the underlying neural mechanisms by which stress exerts its effects on learning and memory are unknown. We now report that in adult male rats, stress (i.e., restraint plus tailshock) impairs long-term potentiation (LTP) but enhances long-term depression (LTD) in the CA1 area of the hippocampus, a structure implicated in learning and memory processes. These effects on LTP and LTD are prevented when the animals were given CGP39551 (the carboxyethylester of CGP 37849; DL-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, before experiencing stress. In contrast, the anxiolytic drug diazepam did not block the stress effects on hippocampal plasticity. Thus, the effects of stress on subsequent LTP and LTD appear to be mediated through the activation of the NMDA subtype of glutamate receptors. Such modifications in hippocampal plasticity may contribute to learning and memory impairments associated with stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite considerable evidence that ethanol can enhance chloride flux through the gamma-aminobutyric acid type A (GABA/A/) receptor-channel complex in several central neuron types, the effect of ethanol on hippocampal GABAergic systems is still controversial. Therefore, we have reevaluated this interaction in hippocampal pyramidal neurons subjected to local monosynaptic activation combined with pharmacological isolation of the various components of excitatory and inhibitory synaptic potentials, using intracellular current- and voltage-clamp recording methods in the hippocampal slice. In accord with our previous findings, we found that ethanol had little effect on compound inhibitory postsynaptic potentials/currents (IPSP/Cs) containing both GABA/A/ and GABA/B/ components. However, after selective pharmacological blockade of the GABA/B/ component of the IPSP (GABA/B/-IPSP/C) by CGP-35348, low concentrations of ethanol (22-66 mM) markedly enhanced the peak amplitude, and especially the area, of the GABA/A/ component (GABA/A/-IPSP/C) in most CA1 pyramidal neurons. Ethanol had no significant effect on the peak amplitude or area of the pharmacologically isolated GABA/B/-inhibitory postsynaptic current (IPSC). These results provide new data showing that activation of GABAB receptors can obscure ethanol enhancement of GABA/A/ receptor function in hippocampus and suggest that similar methods of pharmacological isolation might be applied to other brain regions showing negative or mixed ethanol-GABA interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal volumes of subjects with a history of major depressive episodes but currently in remission and with no known medical comorbidity were compared to matched normal controls by using volumetric magnetic resonance images. Subjects with a history of major depression had significantly smaller left and right hippocampal volumes with no differences in total cerebral volumes. The degree of hippocampal volume reduction correlated with total duration of major depression. In addition, large (diameter > or = 4.5 mm)-hippocampal low signal foci (LSF) were found within the hippocampus, and their number also correlated with the total number of days depressed. These results suggest that depression is associated with hippocampal atrophy, perhaps due to a progressive process mediated by glucocorticoid neurotoxicity.