123 resultados para HEME OXYGENASE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of the complex between the heme- and FMN-binding domains of bacterial cytochrome P450BM-3, a prototype for the complex between eukaryotic microsomal P450s and P450 reductase, has been determined at 2.03 Å resolution. The flavodoxin-like flavin domain is positioned at the proximal face of the heme domain with the FMN 4.0 and 18.4 Å from the peptide that precedes the heme-binding loop and the heme iron, respectively. The heme-binding peptide represents the most efficient and coupled through-bond electron pathway to the heme iron. Substantial differences between the FMN-binding domains of P450BM-3 and microsomal P450 reductase, observed around the flavin-binding sites, are responsible for different redox properties of the FMN, which, in turn, control electron flow to the P450.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Horse ferricytochrome c (cyt c) undergoes exchange of one of its axial heme ligands (Met-80) for one or more non-native ligands under denaturing conditions. We have used 1H NMR spectroscopy to detect two conformations of paramagnetic cyt c with non-native heme ligation through a range of urea concentrations. One non-native form is an equilibrium unfolding intermediate observed under partially denaturing conditions and is attributed to replacement of Met-80 with one or more Lys side chains. The second non-native form, in which the native Met ligand is replaced by a His, is observed under strongly denaturing conditions. Thermodynamic analysis of these data indicates a relatively small ΔG (17 kJ/mol) for the transition from native to the Lys-ligated intermediate and a significantly larger ΔG (47 kJ/mol) for the transition from native to the His-ligated species. Although CD and fluorescence data indicate that the equilibrium unfolding of cyt c is a two-state process, these NMR results implicate an intermediate with His-Lys ligation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A de novo sequencing program for proteins is described that uses tandem MS data from electron capture dissociation and collisionally activated dissociation of electrosprayed protein ions. Computer automation is used to convert the fragment ion mass values derived from these spectra into the most probable protein sequence, without distinguishing Leu/Ile. Minimum human input is necessary for the data reduction and interpretation. No extra chemistry is necessary to distinguish N- and C-terminal fragments in the mass spectra, as this is determined from the electron capture dissociation data. With parts-per-million mass accuracy (now available by using higher field Fourier transform MS instruments), the complete sequences of ubiquitin (8.6 kDa) and melittin (2.8 kDa) were predicted correctly by the program. The data available also provided 91% of the cytochrome c (12.4 kDa) sequence (essentially complete except for the tandem MS-resistant region K13–V20 that contains the cyclic heme). Uncorrected mass values from a 6-T instrument still gave 86% of the sequence for ubiquitin, except for distinguishing Gln/Lys. Extensive sequencing of larger proteins should be possible by applying the algorithm to pieces of ≈10-kDa size, such as products of limited proteolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared with free heme, the proteins hemoglobin (Hb) and myoglobin (Mb) exhibit greatly enhanced affinity for oxygen relative to carbon monoxide. This physiologically vital property has been attributed to either steric hindrance of CO or stabilization of O2 binding by a hydrogen bond with the distal histidine. We report here the first direct evidence of such a hydrogen bond in both α- and β-chains of oxyhemoglobin, as revealed by heteronuclear NMR spectra of chain-selectively labeled samples. Using these spectra, we have assigned the imidazole ring 1H and 15N chemical shifts of the proximal and distal histidines in both carbonmonoxy- and oxy-Hb. Because of their proximity to the heme, these chemical shifts are extremely sensitive to the heme pocket conformation. Comparison of the measured chemical shifts with values predicted from x-ray structures suggests differences between the solution and crystal structures of oxy-Hb. The chemical shift discrepancies could be accounted for by very small displacements of the proximal and distal histidines. This suggests that NMR could be used to obtain very high-resolution heme pocket structures of Hb, Mb, and other heme proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The α1- and β1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5′-hydroxymethyl-2′furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66 → Gln variant enzyme at 3.1-Å resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Net photosynthesis (Pn) is inhibited by moderate heat stress. To elucidate the mechanism of inhibition, we examined the effects of temperature on gas exchange and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation in cotton and tobacco leaves and compared the responses to those of the isolated enzymes. Depending on the CO2 concentration, Pn decreased when temperatures exceeded 35–40°C. This response was inconsistent with the response predicted from the properties of fully activated Rubisco. Rubisco deactivated in leaves when temperature was increased and also in response to high CO2 or low O2. The decrease in Rubisco activation occurred when leaf temperatures exceeded 35°C, whereas the activities of isolated activase and Rubisco were highest at 42°C and >50°C, respectively. In the absence of activase, isolated Rubisco deactivated under catalytic conditions and the rate of deactivation increased with temperature but not with CO2. The ability of activase to maintain or promote Rubisco activation in vitro also decreased with temperature but was not affected by CO2. Increasing the activase/Rubisco ratio reduced Rubisco deactivation at higher temperatures. The results indicate that, as temperature increases, the rate of Rubisco deactivation exceeds the capacity of activase to promote activation. The decrease in Rubisco activation that occurred in leaves at high CO2 was not caused by a faster rate of deactivation, but by reduced activase activity possibly in response to unfavorable ATP/ADP ratios. When adjustments were made for changes in activation state, the kinetic properties of Rubisco predicted the response of Pn at high temperature and CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfite oxidase catalyzes the terminal reaction in the degradation of sulfur amino acids. Genetic deficiency of sulfite oxidase results in neurological abnormalities and often leads to death at an early age. The mutation in the sulfite oxidase gene responsible for sulfite oxidase deficiency in a 5-year-old girl was identified by sequence analysis of cDNA obtained from fibroblast mRNA to be a guanine to adenine transition at nucleotide 479 resulting in the amino acid substitution of Arg-160 to Gln. Recombinant protein containing the R160Q mutation was expressed in Escherichia coli, purified, and characterized. The mutant protein contained its full complement of molybdenum and heme, but exhibited 2% of native activity under standard assay conditions. Absorption spectroscopy of the isolated molybdenum domains of native sulfite oxidase and of the R160Q mutant showed significant differences in the 480- and 350-nm absorption bands, suggestive of altered geometry at the molybdenum center. Kinetic analysis of the R160Q protein showed an increase in Km for sulfite combined with a decrease in kcat resulting in a decrease of nearly 1,000-fold in the apparent second-order rate constant kcat/Km. Kinetic parameters for the in vitro generated R160K mutant were found to be intermediate in value between those of the native protein and the R160Q mutant. Native sulfite oxidase was rapidly inactivated by phenylglyoxal, yielding a modified protein with kinetic parameters mimicking those of the R160Q mutant. It is proposed that Arg-160 attracts the anionic substrate sulfite to the binding site near the molybdenum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the construction of a synthetic flavo-heme protein that incorporates two major physiological activities of flavoproteins: light activation of flavin analogous to DNA photolyase and rapid intramolecular electron transfer between the flavin and heme cofactors as in several oxidoreductases. The functional tetra-α-helix protein comprises two 62-aa helix-loop-helix subunits. Each subunit contains a single cysteine to which flavin (7-acetyl-10-methylisoalloxazine) is covalently attached and two histidines appropriately positioned for bis-his coordination of heme cofactors. Both flavins and hemes are situated within the hydrophobic core of the protein. Intramolecular electron transfer from flavosemiquinone generated by photoreduction from a sacrificial electron donor in solution was examined between protoporphyrin IX and 1-methyl-2-oxomesoheme XIII. Laser pulse-activated electron transfer from flavin to meso heme occurs on a 100-ns time scale, with a favorable free energy of approximately −100 meV. Electron transfer from flavin to the lower potential protoporphyrin IX, with an unfavorable free energy, can be induced after a lag phase under continuous light illumination. Thus, the supporting peptide matrix provides an excellent framework for the positioning of closely juxtaposed redox groups capable of facilitating intramolecular electron transfer and begins to clarify in a simplified and malleable system the natural engineering of flavoproteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protoporphyrinogen oxidase (EC 1–3-3–4), the 60-kDa membrane-bound flavoenzyme that catalyzes the final reaction of the common branch of the heme and chlorophyll biosynthesis pathways in plants, is the molecular target of diphenyl ether-type herbicides. It is highly resistant to proteases (trypsin, endoproteinase Glu-C, or carboxypeptidases A, B, and Y), because the protein is folded into an extremely compact form. Trypsin maps of the native purified and membrane-bound yeast protoporphyrinogen oxidase show that this basic enzyme (pI > 8.5) was cleaved at a single site under nondenaturing conditions, generating two peptides with relative molecular masses of 30,000 and 35,000. The endoproteinase Glu-C also cleaved the protein into two peptides with similar masses, and there was no additional cleavage site under mild denaturing conditions. N-terminal peptide sequence analysis of the proteolytic (trypsin and endoproteinase Glu-C) peptides showed that both cleavage sites were located in putative connecting loop between the N-terminal domain (25 kDa) with the βαβ ADP-binding fold and the C-terminal domain (35 kDa), which possibly is involved in the binding of the isoalloxazine moiety of the FAD cofactor. The peptides remained strongly associated and fully active with the Km for protoporphyrinogen and the Ki for various inhibitors, diphenyl-ethers, or diphenyleneiodonium derivatives, identical to those measured for the native enzyme. However, the enzyme activity of the peptides was much more susceptible to thermal denaturation than that of the native protein. Only the C-terminal domain of protoporphyrinogen oxidase was labeled specifically in active site-directed photoaffinity-labeling experiments. Trypsin may have caused intramolecular transfer of the labeled group to reactive components of the N-terminal domain, resulting in nonspecific labeling. We suggest that the active site of protoporphyrinogen oxidase is in the C-terminal domain of the protein, at the interface between the C- and N-terminal domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosystem II is a reaction center protein complex located in photosynthetic membranes of plants, algae, and cyanobacteria. Using light energy, photosystem II catalyzes the oxidation of water and the reduction of plastoquinone, resulting in the release of molecular oxygen. A key component of photosystem II is cytochrome b559, a membrane-embedded heme protein with an unknown function. The cytochrome is unusual in that a heme links two separate polypeptide subunits, α and β, either as a heterodimer (αβ) or as two homodimers (α2 and β2). To determine the structural organization of cytochrome b559 in the membrane, we used site-directed mutagenesis to fuse the coding regions of the two respective genes in the cyanobacterium Synechocystis sp. PCC 6803. In this construction, the C terminus of the α subunit (9 kDa) is attached to the N terminus of the β subunit (5 kDa) to form a 14-kDa αβ fusion protein that is predicted to have two membrane-spanning α-helices with antiparallel orientations. Cells containing the αβ fusion protein grow photoautotrophically and assemble functional photosystem II complexes. Optical spectroscopy shows that the αβ fusion protein binds heme and is incorporated into photosystem II. These data support a structural model of cytochrome b559 in which one heme is coordinated to an α2 homodimer and a second heme is coordinated to a β2 homodimer. In this model, each photosystem II complex contains two cytochrome b559 hemes, with the α2 heme located near the stromal side of the membrane and the β2 heme located near the lumenal side.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early steps in the biosynthesis of Taxol involve the cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene followed by cytochrome P450-mediated hydroxylation at C5, acetylation of this intermediate, and a second cytochrome P450-dependent hydroxylation at C10 to yield taxadien-5α-acetoxy-10β-ol. Subsequent steps of the pathway involve additional cytochrome P450 catalyzed oxygenations and CoA-dependent acylations. The limited feasibility of reverse genetic cloning of cytochrome P450 oxygenases led to the use of Taxus cell cultures induced for Taxol production and the development of an approach based on differential display of mRNA-reverse transcription-PCR, which ultimately provided full-length forms of 13 unique but closely related cytochrome P450 sequences. Functional expression of these enzymes in yeast was monitored by in situ spectrophotometry coupled to in vivo screening of oxygenase activity by feeding taxoid substrates. This strategy yielded a family of taxoid-metabolizing enzymes and revealed the taxane 10β-hydroxylase as a 1494-bp cDNA that encodes a 498-residue cytochrome P450 capable of transforming taxadienyl acetate to the 10β-hydroxy derivative; the identity of this latter pathway intermediate was confirmed by chromatographic and spectrometric means. The 10β-hydroxylase represents the initial cytochrome P450 gene of Taxol biosynthesis to be isolated by an approach that should provide access to the remaining oxygenases of the pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidants generated by eosinophils during chronic inflammation may lead to mutagenesis in adjacent epithelial cells. Eosinophil peroxidase, a heme enzyme released by eosinophils, generates hypobromous acid that damages tissue in inflammatory conditions. We show that human eosinophils use eosinophil peroxidase to produce 5-bromodeoxycytidine. Flow cytometric, immunohistochemical, and mass spectrometric analyses all demonstrated that 5-bromodeoxycytidine generated by eosinophil peroxidase was taken up by cultured cells and incorporated into genomic DNA as 5-bromodeoxyuridine. Although previous studies have focused on oxidation of chromosomal DNA, our observations suggest another mechanism for oxidative damage of DNA. In this scenario, peroxidase-catalyzed halogenation of nucleotide precursors yields products that subsequently can be incorporated into DNA. Because the thymine analog 5-BrUra mispairs with guanine in DNA, generation of brominated pyrimidines by eosinophils might constitute a mechanism for cytotoxicity and mutagenesis at sites of inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A plastid-derived signal plays an important role in the coordinated expression of both nuclear- and chloroplast-localized genes that encode photosynthesis-related proteins. Arabidopsis GUN (genomes uncoupled) loci have been identified as components of plastid-to-nucleus signal transduction. Unlike wild-type plants, gun mutants have nuclear Lhcb1 expression in the absence of chloroplast development. We observed a synergistic phenotype in some gun double-mutant combinations, suggesting there are at least two independent pathways in plastid-to-nucleus signal transduction. There is a reduction of chlorophyll accumulation in gun4 and gun5 mutant plants, and a gun4gun5 double mutant shows an albino phenotype. We cloned the GUN5 gene, which encodes the ChlH subunit of Mg-chelatase. We also show that gun2 and gun3 are alleles of the known photomorphogenic mutants, hy1 and hy2, which are required for phytochromobilin synthesis from heme. These findings suggest that certain perturbations of the tetrapyrrole biosynthetic pathway generate a signal from chloroplasts that causes transcriptional repression of nuclear genes encoding plastid-localized proteins. The comparison of mutant phenotypes of gun5 and another Mg-chelatase subunit (ChlI) mutant suggests a specific function for ChlH protein in the plastid-signaling pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cd1 nitrite reductase catalyzes the conversion of nitrite to NO in denitrifying bacteria. Reduction of the substrate occurs at the d1-heme site, which faces on the distal side some residues thought to be essential for substrate binding and catalysis. We report the results obtained by mutating to Ala the two invariant active site histidines, His-327 and His-369, of the enzyme from Pseudomonas aeruginosa. Both mutants have lost nitrite reductase activity but maintain the ability to reduce O2 to water. Nitrite reductase activity is impaired because of the accumulation of a catalytically inactive form, possibly because the productive displacement of NO from the ferric d1-heme iron is impaired. Moreover, the two distal His play different roles in catalysis; His-369 is absolutely essential for the stability of the Michaelis complex. The structures of both mutants show (i) the new side chain in the active site, (ii) a loss of density of Tyr-10, which slipped away with the N-terminal arm, and (iii) a large topological change in the whole c-heme domain, which is displaced 20 Å from the position occupied in the wild-type enzyme. We conclude that the two invariant His play a crucial role in the activity and the structural organization of cd1 nitrite reductase from P. aeruginosa.