67 resultados para Glutamate(nmda) Receptor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA editing by adenosine deamination in brain-expressed pre-mRNAs for glutamate receptor (GluR) subunits alters gene-specified codons for functionally critical positions, such as the channel's Q/R site. We show by transcript analysis of minigenes transiently expressed in PC-12 cells that, in contrast to GluR-B pre-mRNA, where the two editing sites (Q/R and R/G) require base pairing with nearby intronic editing site complementary sequences (ECSs), editing in GluR5 and GluR6 pre-mRNAs recruits an ECS located as far as 1900 nucleotides distal to the Q/R site. The exon-intron duplex structure of the GluR5 and GluR6 pre-mRNAs appears to be a substrate of double-stranded RNA-specific adenosine deaminase. This enzyme when coexpressed in HEK 293 cells preferentially targets the adenosine of the Q/R site and of an unpaired position in the ECS which is highly edited in brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The G-protein-coupled metabotropic glutamate receptor mGluR1 alpha and the ionotropic glutamate receptor GluR6 were examined for posttranslational palmitoylation. Recombinant receptors were expressed in baculovirus-infected insect cells or in human embryonic kidney cells and were metabolically labeled with [3H]palmitic acid. The metabotropic mGluR1 alpha receptor was not labeled whereas the GluR6 kainate receptor was labeled after incubation with [3H]palmitate. The [3H]palmitate labeling of GluR6 was eliminated by treatment with hydroxylamine, indicating that the labeling was due to palmitoylation at a cysteine residue via a thioester bond. Site-directed mutagenesis was used to demonstrate that palmitoylation of GluR6 occurs at two cysteine residues, C827 and C840, located in the carboxyl-terminal domain of the molecule. A comparison of the electrophysiological properties of the wild-type and unpalmitoylated mutant receptor (C827A, C840A) showed that the kainate-gated currents produced by the unpalmitoylated mutant receptor were indistinguishable from those of the wild-type GluR6. The unpalmitoylated mutant was a better substrate for protein kinase C than the wild-type GluR6 receptor. These data indicate that palmitoylation may not modulate kainate channel function directly but instead affect function indirectly by regulating the phosphorylation state of the receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse-like currents resembling miniature postsynaptic currents were recorded in patch-clamped isolated cones from the tiger salamander retina. The events were absent in isolated cones without synaptic terminals. The frequency of events was increased by either raising the osmotic pressure or depolarizing the cell. It was decreased by the application of either glutamate or the glutamate-transport blockers dihydrokainate and D,L-threo-3-hydroxyaspartate. The events required external Na+ for which Li+ could not substitute. The reversal potential of these currents followed the equilibrium potential for Cl- when internal Cl- concentration was changed. Thus, these miniature currents appear to represent the presynaptic activation of the glutamate receptor with glutamate transporter-like pharmacology, caused by the photoreceptor's own vesicular glutamate release. Using a noninvasive method to preserve the intracellular Cl- concentration, we showed that glutamate elicits an outward current in isolated cones. Fluorescence of the membrane-permeable form of fura-2 was used to monitor Ca2+ entry at the cone terminal as a measure of membrane depolarization. The increase in intracellular Ca2+ concentration, elicited by puff application of 30 mM KCl, was completely suppressed in the presence of 100 microM glutamate. Puff application of glutamate alone had no measurable depolarizing effect. These results suggest that the equilibrium potential for Cl-, ECl, was more negative than the activation range for Ca2+ channels and that glutamate elicited an outward current, hyperpolarizing the cones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The N-methyl-D-aspartate receptor (NMDAR), a pivotal entity for synaptic plasticity and excitotoxicity in the brain, is a target of psychotomimetic drugs such as phencyclidine (PCP) and dizolcipine (MK-801). In contrast, a related glutamate receptor, the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor GluR1, is weakly sensitive to these drugs. Three point mutations on GluR1, mimicking homologous residues on the NMDAR, confer the PCP and MK-801 blockade properties that are characteristic of the NMDAR--namely, high potency, voltage dependence, and use dependence. The molecular determinants that specify the PCP block appear confined to the putative M2 transmembrane segment, whereas the sensitivity to MK-801 requires an interplay between residues from M2 and M3. Given the plausible involvement of the NMDAR in the etiology of several neurodegenerative diseases and in excitotoxic neuronal cell death, tailored glutamate receptors with specific properties may be models for designing and screening new drugs targeted to prevent glutamate-mediated neural damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stimulation of muscarinic m1 or m3 receptors can, by generating diacylglycerol and activating protein kinase C, accelerate the breakdown of the amyloid precursor protein (APP) to form soluble, nonamyloidogenic derivatives (APPs), as previously shown. This relationship has been demonstrated in human glioma and neuroblastoma cells, as well as in transfected human embryonic kidney 293 cells and PC-12 cells. We now provide evidence that stimulation of metabotropic glutamate receptors (mGluRs), which also are coupled to phosphatidylinositol 4,5-bisphosphate hydrolysis, similarly accelerates processing of APP into nonamyloidogenic APPs. This process is demonstrated both in hippocampal neurons derived from fetal rats and in human embryonic kidney 293 cells transfected with cDNA expression constructs encoding the mGluR 1 alpha subtype. In hippocampal neurons, both an mGluR antagonist, L-(+)-2-amino-3-phosphonopropionic acid, and an inhibitor of protein kinase C, GF 109203X, blocked the APPs release evoked by glutamate receptor stimulation. Ionotropic glutamate agonists, N-methyl-D-aspartate or S(-)-5-fluorowillardiine, failed to affect APPs release. These data show that selective mGluR agonists that initiate signal-transduction events can regulate APP processing in bona fide primary neurons and transfected cells. As glutamatergic neurons in the cortex and hippocampus are damaged in Alzheimer disease, amyloid production in these regions may be enhanced by deficits in glutamatergic neurotransmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single channel recordings demonstrate that ion channels switch stochastically between an open and a closed pore conformation. In search of a structural explanation for this universal open/close behavior, we have uncovered a striking degree of amino acid homology across the pore-forming regions of voltage-gated K channels and glutamate receptors. This suggested that the pores of these otherwise unrelated classes of channels could be structurally conserved. Strong experimental evidence supports a hairpin structure for the pore-forming region of K channels. Consequently, we hypothesized the existence of a similar structure for the pore of glutamate receptors. In ligand-gated channels, the pore is formed by M2, the second of four putative transmembrane segments. A hairpin structure for M2 would affect the subsequent membrane topology, inverting the proposed orientation of the next segments, M3. We have tested this idea for the NR1 subunit of the N-methyl-D-aspartate receptor. Mutations that affected the glycosylation pattern of the NR1 subunit localize both extremes of the M3-M4 linker to the extracellular space. Whole cell currents and apparent agonist affinities were not affected by these mutations. Therefore it can be assumed that they represent the native transmembrane topology. The extracellular assignment of the M3-M4 linker challenged the current topology model by inverting M3. Taken together, the amino acid homology and the new topology suggest that the pore-forming M2 segment of glutamate receptors does not transverse the membrane but, rather, forms a hairpin structure, similar to that found in K channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have molecularly cloned a calcium sensing receptor (CaSR) from a rat striatal cDNA library. Rat CaSR displays 92% overall homology to its bovine counterpart with seven putative transmembrane domains characteristic of the superfamily of guanine nucleotide-binding proteins and significant homology with the metabotropic glutamate receptors. Northern blot analysis reveals two transcripts in thyroid, kidney, lung, ileum, and pituitary. In brain highest regional expression of the RNA occurs in the hypothalamus and the corpus striatum. Immunohistochemistry reveals discrete punctate localizations throughout the brain that appear to be associated with nerve terminals. No staining is evident in cell bodies of neurons or glia. Cerebral arteries display an intense network of CaSR immunoreactive fibers associated with vessel innervation. CaSR on nerve terminal membranes may regulate neurotransmitter disposition in response to Ca2+ levels in the synaptic space.