193 resultados para GENE-MUTATIONS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Candida albicans genes, CST20 and HST7, were cloned by their ability to suppress the mating defects of Saccharomyces cerevisiae mutants in the ste20 and ste7 genes, which code for elements of the mating mitogen-activated protein (MAP) kinase pathway. These Candida genes are both structural and functional homologs of the cognate Saccharomyces genes. The pattern of suppression in Saccharomyces is related to their presumptive position in the MAP kinase cascade. Null alleles of these genes were constructed in Candida. The Candida homozygous null mutants are defective in hyphal formation on some media, but are still induced to form hyphae by serum, showing that serum induction of hyphae is independent of the MAP kinase cascade. The Candida heterozygotes CST20/cst20 and HST7/hst7 are also defective in hyphal formation. This lack of dominance of the wild-type allele suggests that gene dosage is important in Candida.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Behavioral and electrophysiological studies on mutants defective in the Drosophila inebriated (ine) gene demonstrated increased excitability of the motor neuron. In this paper, we describe the cloning and sequence analysis of ine. Mutations in ine were localized on cloned DNA by restriction mapping and restriction fragment length polymorphism (RFLP) mapping of ine mutants. DNA from the ine region was then used to isolate an ine cDNA. In situ hybridization of ine transcripts to developing embryos revealed expression of this gene in several cell types, including the posterior hindgut, Malpighian tubules, anal plate, garland cells, and a subset of cells in the central nervous system. The ine cDNA contains an open reading frame of 658 amino acids with a high degree of sequence similarity to members of the Na+/Cl−-dependent neurotransmitter transporter family. Members of this family catalyze the rapid reuptake of neurotransmitters released into the synapse and thereby play key roles in controlling neuronal function. We conclude that ine mutations cause increased excitability of the Drosophila motor neuron by causing the defective reuptake of the substrate neurotransmitter of the ine transporter and thus overstimulation of the motor neuron by this neurotransmitter. From this observation comes a unique opportunity to perform a genetic dissection of the regulation of excitability of the Drosophila motor neuron.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The respiratory gene cox2, normally present in the mitochondrion, was previously shown to have been functionally transferred to the nucleus during flowering plant evolution, possibly during the diversification of legumes. To search for novel intermediate stages in the process of intracellular gene transfer and to assess the evolutionary timing and frequency of cox2 transfer, activation, and inactivation, we examined nuclear and mitochondrial (mt) cox2 presence and expression in over 25 legume genera and mt cox2 presence in 392 genera. Transfer and activation of cox2 appear to have occurred during recent legume evolution, more recently than previously inferred. Many intermediate stages of the gene transfer process are represented by cox2 genes in the studied legumes. Nine legumes contain intact copies of both nuclear and mt cox2, although transcripts could not be detected for some of these genes. Both cox2 genes are transcribed in seven legumes that are phylogenetically interspersed with species displaying only nuclear or mt cox2 expression. Inactivation of cox2 in each genome has taken place multiple times and in a variety of ways, including loss of detectable transcripts or transcript editing and partial to complete gene loss. Phylogenetic evidence shows about the same number (3–5) of separate inactivations of nuclear and mt cox2, suggesting that there is no selective advantage for a mt vs. nuclear location of cox2 in plants. The current distribution of cox2 presence and expression between the nucleus and mitochondrion in the studied legumes is probably the result of chance mutations silencing either cox2 gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive syndrome associated with chromosomal instability, hypersensitivity to DNA crosslinking agents, and predisposition to malignancy. The gene for FA complementation group A (FAA) recently has been cloned. The cDNA is predicted to encode a polypeptide of 1,455 amino acids, with no homologies to any known protein that might suggest a function for FAA. We have used single-strand conformational polymorphism analysis to screen genomic DNA from a panel of 97 racially and ethnically diverse FA patients from the International Fanconi Anemia Registry for mutations in the FAA gene. A total of 85 variant bands were detected. Forty-five of the variants are probably benign polymorphisms, of which nine are common and can be used for various applications, including mapping studies for other genes in this region of chromosome 16q. Amplification refractory mutation system assays were developed to simplify their detection. Forty variants are likely to be pathogenic mutations. Seventeen of these are microdeletions/microinsertions associated with short direct repeats or homonucleotide tracts, a type of mutation thought to be generated by a mechanism of slipped-strand mispairing during DNA replication. A screening of 350 FA probands from the International Fanconi Anemia Registry for two of these deletions (1115–1118del and 3788–3790del) revealed that they are carried on about 2% and 5% of the FA alleles, respectively. 3788–3790del appears in a variety of ethnic groups and is found on at least two different haplotypes. We suggest that FAA is hypermutable, and that slipped-strand mispairing, a mutational mechanism recognized as important for the generation of germ-line and somatic mutations in a variety of cancer-related genes, including p53, APC, RB1, WT1, and BRCA1, may be a major mechanism for FAA mutagenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic changes in insects that lead to insecticide resistance include point mutations and up-regulation/amplification of detoxification genes. Here, we report a third mechanism, resistance caused by an absence of gene product. Mutations of the Methoprene-tolerant (Met) gene of Drosophila melanogaster result in resistance to both methoprene, a juvenile hormone (JH) agonist insecticide, and JH. Previous results have demonstrated a mechanism of resistance involving an intracellular JH binding protein that has reduced ligand affinity in Met flies. We show that a γ-ray induced allele, Met27, completely lacks Met transcript during the insecticide-sensitive period in development. Although Met27 homozygotes have reduced oogenesis, they are viable, demonstrating that Met is not a vital gene. Most target-site resistance genes encode vital proteins and thus have few mutational changes that permit both resistance and viability. In contrast, resistance genes such as Met that encode nonvital insecticide target proteins can have a variety of mutational changes that result in an absence of functional gene product and thus should show higher rates of resistance evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new antigen receptor (NAR) gene in the nurse shark diversifies extensively by somatic hypermutation. It is not known, however, whether NAR somatic hypermutation generates the primary repertoire (like in the sheep) or rather is used in antigen-driven immune responses. To address this issue, the sequences of NAR transmembrane (Tm) and secretory (Sec) forms, presumed to represent the primary and secondary repertoires, respectively, were examined from the peripheral blood lymphocytes of three adult nurse sharks. More than 40% of the Sec clones but fewer than 11% of Tm clones contained five mutations or more. Furthermore, more than 75% of the Tm clones had few or no mutations. Mutations in the Sec clones occurred mostly in the complementarity-determining regions (CDR) with a significant bias toward replacement substitutions in CDR1; in Tm clones there was no significant bias toward replacements and only a low level of targeting to the CDRs. Unlike the Tm clones where the replacement mutational pattern was similar to that seen for synonymous changes, Sec replacements displayed a distinct pattern of mutations. The types of mutations in NAR were similar to those found in mouse Ig genes rather than to the unusual pattern reported for shark and Xenopus Ig. Finally, an oligoclonal family of Sec clones revealed a striking trend toward acquisition of glutamic/aspartic acid, suggesting some degree of selection. These data strongly suggest that hypermutation of NAR does not generate the repertoire, but instead is involved in antigen-driven immune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mouse models show that congenital neural tube defects (NTDs) can occur as a result of mutations in the platelet-derived growth factor receptor-α gene (PDGFRα). Mice heterozygous for the PDGFRα-mutation Patch, and at the same time homozygous for the undulated mutation in the Pax1 gene, exhibit a high incidence of lumbar spina bifida occulta, suggesting a functional relation between PDGFRα and Pax1. Using the human PDGFRα promoter linked to a luciferase reporter, we show in the present paper that Pax1 acts as a transcriptional activator of the PDGFRα gene in differentiated Tera-2 human embryonal carcinoma cells. Two mutant Pax1 proteins carrying either the undulated-mutation or the Gln → His mutation previously identified by us in the PAX1 gene of a patient with spina bifida, were not or less effective, respectively. Surprisingly, Pax1 mutant proteins appear to have opposing transcriptional activities in undifferentiated Tera-2 cells as well as in the U-2 OS osteosarcoma cell line. In these cells, the mutant Pax1 proteins enhance PDGFRα-promoter activity whereas the wild-type protein does not. The apparent up-regulation of PDGFRα expression in these cells clearly demonstrates a gain-of-function phenomenon associated with mutations in Pax genes. The altered transcriptional activation properties correlate with altered protein–DNA interaction in band-shift assays. Our data provide additional evidence that mutations in Pax1 can act as a risk factor for NTDs and suggest that the PDGFRα gene is a direct target of Pax1. In addition, the results support the hypothesis that deregulated PDGFRα expression may be causally related to NTDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA methylation is an important regulator of genetic information in species ranging from bacteria to humans. DNA methylation appears to be critical for mammalian development because mice nullizygous for a targeted disruption of the DNMT1 DNA methyltransferase die at an early embryonic stage. No DNA methyltransferase mutations have been reported in humans until now. We describe here the first example of naturally occurring mutations in a mammalian DNA methyltransferase gene. These mutations occur in patients with a rare autosomal recessive disorder, which is termed the ICF syndrome, for immunodeficiency, centromeric instability, and facial anomalies. Centromeric instability of chromosomes 1, 9, and 16 is associated with abnormal hypomethylation of CpG sites in their pericentromeric satellite regions. We are able to complement this hypomethylation defect by somatic cell fusion to Chinese hamster ovary cells, suggesting that the ICF gene is conserved in the hamster and promotes de novo methylation. ICF has been localized to a 9-centimorgan region of chromosome 20 by homozygosity mapping. By searching for homologies to known DNA methyltransferases, we identified a genomic sequence in the ICF region that contains the homologue of the mouse Dnmt3b methyltransferase gene. Using the human sequence to screen ICF kindreds, we discovered mutations in four patients from three families. Mutations include two missense substitutions and a 3-aa insertion resulting from the creation of a novel 3′ splice acceptor. None of the mutations were found in over 200 normal chromosomes. We conclude that mutations in the DNMT3B are responsible for the ICF syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Snf, encoded by sans fille, is the Drosophila homolog of mammalian U1A and U2B′′ and is an integral component of U1 and U2 small nuclear ribonucleoprotein particles (snRNPs). Surprisingly, changes in the level of this housekeeping protein can specifically affect autoregulatory activity of the RNA-binding protein Sex-lethal (Sxl) in an action that we infer must be physically separate from Snf’s functioning within snRNPs. Sxl is a master switch gene that controls its own pre-mRNA splicing as well as splicing for subordinate switch genes that regulate sex determination and dosage compensation. Exploiting an unusual new set of mutant Sxl alleles in an in vivo assay, we show that Snf is rate-limiting for Sxl autoregulation when Sxl levels are low. In such situations, increasing either maternal or zygotic snf+ dose enhances the positive autoregulatory activity of Sxl for Sxl somatic pre-mRNA splicing without affecting Sxl activities toward its other RNA targets. In contrast, increasing the dose of genes encoding either the integral U1 snRNP protein U1-70k, or the integral U2 snRNP protein SF3a60, has no effect. Increased snf+ enhances Sxl autoregulation even when U1-70k and SF3a60 are reduced by mutation to levels that, in the case of SF3a60, demonstrably interfere with Sxl autoregulation. The observation that increased snf+ does not suppress other phenotypes associated with mutations that reduce U1-70k or SF3a60 is additional evidence that snf+ dose effects are not caused by increased snRNP levels. Mammalian U1A protein, like Snf, has a snRNP-independent function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myostatin, a member of the transforming growth factor-β superfamily, is a genetic determinant of skeletal muscle growth. Mice and cattle with inactivating mutations of myostatin have marked muscle hypertrophy. However, it is not known whether myostatin regulates skeletal muscle growth in adult men and whether increased myostatin expression contributes to wasting in chronic illness. We examined the hypothesis that myostatin expression correlates inversely with fat-free mass in humans and that increased expression of the myostatin gene is associated with weight loss in men with AIDS wasting syndrome. We therefore cloned the human myostatin gene and cDNA and examined the gene’s expression in the skeletal muscle and serum of healthy and HIV-infected men. The myostatin gene comprises three exons and two introns, maps to chromosomal region 2q33.2, has three putative transcription initiation sites, and is transcribed as a 3.1-kb mRNA species that encodes a 375-aa precursor protein. Myostatin is expressed uniquely in the human skeletal muscle as a 26-kDa mature glycoprotein (myostatin-immunoreactive protein) and secreted into the plasma. Myostatin immunoreactivity is detectable in human skeletal muscle in both type 1 and 2 fibers. The serum and intramuscular concentrations of myostatin-immunoreactive protein are increased in HIV-infected men with weight loss compared with healthy men and correlate inversely with fat-free mass index. These data support the hypothesis that myostatin is an attenuator of skeletal muscle growth in adult men and contributes to muscle wasting in HIV-infected men.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589–1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Null mutations at the misato locus of Drosophila melanogaster are associated with irregular chromosomal segregation at cell division. The consequences for morphogenesis are that mutant larvae are almost devoid of imaginal disk tissue, have a reduction in brain size, and die before the late third-instar larval stage. To analyze these findings, we isolated cDNAs in and around the misato locus, mapped the breakpoints of chromosomal deficiencies, determined which transcript corresponded to the misato gene, rescued the cell division defects in transgenic organisms, and sequenced the genomic DNA. Database searches revealed that misato codes for a novel protein, the N-terminal half of which contains a mixture of peptide motifs found in α-, β-, and γ-tubulins, as well as a motif related to part of the myosin heavy chain proteins. The sequence characteristics of misato indicate either that it arose from an ancestral tubulin-like gene, different parts of which underwent convergent evolution to resemble motifs in the conventional tubulins, or that it arose by the capture of motifs from different tubulin genes. The Saccharomyces cerevisiae genome lacks a true homolog of the misato gene, and this finding highlights the emerging problem of assigning functional attributes to orphan genes that occur only in some evolutionary lineages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arabidopsis bas1-D mutation suppresses the long hypocotyl phenotype caused by mutations in the photoreceptor phytochrome B (phyB). The adult phenotype of bas1-D phyB-4 double mutants mimics that of brassinosteroid biosynthetic and response mutants. bas1-D phyB-4 has reduced levels of brassinosteroids and accumulates 26-hydroxybrassinolide in feeding experiments. The basis for the mutant phenotype is the enhanced expression of a cytochrome P450 (CYP72B1). bas1-D suppresses a phyB-null allele, but not a phyA-null mutation, and partially suppresses a cryptochrome-null mutation. Seedlings with reduced BAS1 expression are hyperresponsive to brassinosteroids in a light-dependent manner and display reduced sensitivity to light under a variety of conditions. Thus, BAS1 represents one of the control points between multiple photoreceptor systems and brassinosteroid signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification of cytokine-inducible genes is imperative for determining the mechanisms of cytokine action. A cytokine-inducible gene, mrg1 [melanocyte-specific gene (msg1) related gene], was identified through mRNA differential display of interleukin (IL) 9-stimulated and unstimulated mouse helper T cells. In addition to IL-9, mrg1 can be induced by other cytokines and biological stimuli, including IL-1α, -2, -4, -6, and -11, granulocyte/macrophage colony-stimulating factor, interferon γ, platelet-derived growth factor, insulin, serum, and lipopolysaccharide in diverse cell types. The induction of mrg1 by these stimuli appears to be transient, with induction kinetics similar to other primary response genes, implicating its role in diverse biological processes. Deletion or point mutations of either the Box1 motif (binds Janus kinase 1) or the signal transducer and activator of transcription 3 binding site-containing region within the intracellular domain of the IL-9 receptor ligand binding subunit abolished or greatly reduced mrg1 induction by IL-9, suggesting that the Janus kinase/signal transducer and activator of transcription signaling pathway is required for mrg1 induction, at least in response to IL-9. Transfection of mrg1 cDNA into TS1, an IL-9-dependent mouse T cell line, converted these cells to IL-9-independent growth through a nonautocrine mechanism. Overexpression of mrg1 in Rat1 cells resulted in loss of cell contact inhibition, anchorage-independent growth in soft agar, and tumor formation in nude mice, demonstrating that mrg1 is a transforming gene. MRG1 is a transcriptional activator and may represent a founding member of an additional family of transcription factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germ-line mutations in the human BRCA2 gene confer susceptibility to breast cancer. Efforts to elucidate its function have revealed a putative transcriptional activation domain and in vitro interaction with the DNA repair protein RAD51. Other studies have indicated that RAD51 physically associates with the p53 tumor suppressor protein. Here we show that the BRCA2 gene product is a 460-kDa nuclear phosphoprotein, which forms in vivo complexes with both p53 and RAD51. Moreover, exogenous BRCA2 expression in cancer cells inhibits p53’s transcriptional activity, and RAD51 coexpression enhances BRCA2’s inhibitory effects. These findings demonstrate that BRCA2 physically and functionally interacts with two key components of cell cycle control and DNA repair pathways. Thus, BRCA2 likely participates with p53 and RAD51 in maintaining genome integrity.