90 resultados para Fusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have cloned a fusion partner of the MLL gene at 11q23 and identified it as the gene encoding the human formin-binding protein 17, FBP17. It maps to chromosome 9q34 centromeric to ABL. The gene fusion results from a complex chromosome rearrangement that was resolved by fluorescence in situ hybridization with various probes on chromosomes 9 and 11 as an ins(11;9)(q23;q34)inv(11)(q13q23). The rearrangement resulted in a 5′-MLL/FBP17-3′ fusion mRNA. We retrovirally transduced murine-myeloid progenitor cells with MLL/FBP17 to test its transforming ability. In contrast to MLL/ENL, MLL/ELL and other MLL-fusion genes, MLL/FBP17 did not give a positive readout in a serial replating assay. Therefore, we assume that additional cooperating genetic abnormalities might be needed to establish a full malignant phenotype. FBP17 consists of a C-terminal Src homology 3 domain and an N-terminal region that is homologous to the cell division cycle protein, cdc15, a regulator of the actin cytoskeleton in Schizosaccharomyces pombe. Both domains are separated by a consensus Rho-binding motif that has been identified in different Rho-interaction partners such as Rhotekin and Rhophilin. We evaluated whether FBP17 and members of the Rho family interact in vivo with a yeast two-hybrid assay. None of the various Rho proteins tested, however, interacted with FBP17. We screened a human kidney library and identified a sorting nexin, SNX2, as a protein interaction partner of FBP17. These data provide a link between the epidermal growth factor receptor pathway and an MLL fusion protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complementing reporter genes provide biological indicators of coincident expression of proteins in cells. We have adapted intracistronic complementation of the Escherichia coli lacZ gene for use in mammalian cells. Enzymatic activity detectable by quantitative biochemical assay, flow cytometry, or microscopy is produced upon convergent expression of two distinct mutant lacZ peptides within single cells, or upon fusion of cells expressing such mutants. A novel fluorescent substrate for beta-galactosidase (Fluor-X-Gal) increases detection and permits simultaneous microscopic visualization of other fluorescent markers. The enzymatic complementation described here should facilitate studies of cell fusion, cell lineage, and signal transduction, by producing activity only when two proteins are expressed at the same time and place in intact cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have suggested a role for cystic fibrosis transmembrane conductance regulator (CFTR) in the regulation of intracellular vesicular trafficking. A quantitative fluorescence method was used to test the hypothesis that CFTR expression and activation affects endosome-endosome fusion in intact cells. Endosomes from CFTR-expressing and control (vector-transfected) Swiss 3T3 fibroblasts were labeled by internalization with 4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacene (Bodipy)-avidin, a fluid-phase marker whose fluorescence increases approximately 8-fold upon biotin binding. Cells were washed, chased, and then labeled with biotin-albumin or biotin-transferrin. The fraction of Bodipy-avidin-labeled endosomes that fused with biotin-containing endosomes (f(fusion)) was quantified by ratio imaging microfluorimetry. Endosome fusion in unstimulated CFTR-expressing cells was similar to that in control cells. However, in CFTR-expressing cells activated by forskolin, ffusion was increased by 1.30 +/- 0.18- and 2.65 +/- 0.17-fold for a 0 and 10 min chase time between avidin and biotin-albumin pulses; f(fusion) also increased (1.32 +/- 0.11-fold) when biotin-transferrin replaced biotin-albumin. The stimulation of endosome fusion was not due to differences in rates of endocytosis or endosomal acidification. Endosome fusion was not stimulated by forskolin in Cl--depleted CFTR-expressing cells, suggesting that the increase in endosome fusion is due to the CFTR chloride channel activity. These results provide evidence that CFTR is involved in the regulation of endosome fusion and, thus, a possible basis for the cellular defects associated with cystic fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AML1 is involved in the (8;21) translocation, associated with acute myelogenous leukemia (AML)-type M2, which results in the production of the AML1-ETO fusion protein: the amino-terminal 177 amino acids of AML1 and the carboxyl-terminal 575 amino acids of ETO. The mechanism by which AML1-ETO accomplishes leukemic transformation is unknown; however, AML1-ETO interferes with AML1 transactivation of such AML1 targets as the T-cell receptor beta enhancer and the granulocyte-macrophage colony-stimulating factor promoter. Herein, we explored the effect of AML1-ETO on regulation of a myeloid-specific AML1 target, the macrophage colony-stimulating factor (M-CSF) receptor promoter. We found that AML1-ETO and AML1 work synergistically to transactivate the M-CSF receptor promoter, thus exhibiting a different activity than previously described. Truncation mutants within the ETO portion of AML1-ETO revealed the region of ETO necessary for the cooperativity between AML1 and AML1-ETO lies between amino acids 347 and 540. Endogenous M-CSF receptor expression was examined in Kasumi-1 cells, derived from a patient with AML-M2 t(8;21) and the promonocytic cell line U937. Kasumi-1 cells exhibited a significantly higher level of M-CSF receptor expression than U937 cells. Bone marrow from patients with AML-M2 t(8;21) also exhibited a higher level of expression of M-CSF receptor compared with normal controls. The upregulation of M-CSF receptor expression by AML1-ETO may contribute to the development of a leukemic state in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exocytotic membrane fusion and secretion are promoted by the concerted action of GTP and Ca2+, although the precise site(s) of action in the process are not presently known. However, the calcium-dependent membrane fusion reaction driven by synexin (annexin VII) is an in vitro model for this process, which we have now found to be further activated by GTP. The mechanism of fusion activation depends on the unique ability of synexin to bind and hydrolyze GTP in a calcium-dependent manner, both in vitro and in vivo in streptolysin O-permeabilized chromaffin cells. The required [Ca2+] for GTP binding by synexin is in the range of 50-200 microM, which is known to occur at exocytotic sites in chromaffin cells, neurons, and other cell types. Previous immunolocalization studies place synexin at exocytotic sites in chromaffin cells, and we conclude that synexin is an atypical G protein that may be responsible for both detecting and mediating the Ca2+/GTP signal for exocytotic membrane fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa, an enzyme consisting of 12 identical 38-kDa subunits, displays allosteric properties, namely carbamoylphosphate homotropic cooperativity and heterotropic activation by AMP and other nucleoside monophosphates and inhibition by polyamines. To shed light on the effect of the oligomeric organization on the enzyme's activity and/or allosteric behavior, a hybrid ornithine carbamoyltransferase/glutathione S-transferase (OTCase-GST) molecule was constructed by fusing the 3' end of the P. aeruginosa arcB gene (OTCase) to the 5' end of the cDNA encoding Musca domestica GST by using a polyglycine encoding sequence as a linker. The fusion protein was overexpressed in Escherichia coli and purified from cell extracts by affinity chromatography, making use of the GST domain. It was found to exist as a trimer and to retain both the homotropic and heterotropic characteristic interactions of the wild-type catabolic OTCase but to a lower extent as compared with the wild-type OTCase. The dodecameric organization of catabolic P. aeruginosa OTCase may therefore be related to an enhancement of the substrate cooperativity already present in its trimers (and perhaps also to the thermostability of the enzyme).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pediatric alveolar rhabdomyosarcoma is characterized by a chromosomal translocation that fuses parts of the PAX3 and FKHR genes. PAX3 codes for a transcriptional regulator that controls developmental programs, and FKHR codes for a forkhead-winged helix protein, also a likely transcription factor. The PAX3-FKHR fusion product retains the DNA binding domains of the PAX3 protein and the putative activator domain of the FKHR protein. The PAX3-FKHR protein has been shown to function as a transcriptional activator. Using the RCAS retroviral vector, we have introduced the PAX3-FKHR gene into chicken embryo fibroblasts. Expression of the PAX3-FKHR protein in these cells leads to transformation: the cells become enlarged, grow tightly packed and in multiple layers, and acquire the ability for anchorage-independent growth. This cellular transformation in vitro will facilitate studies on the mechanism of PAX3-FKHR-induced oncogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A constitutively active form of fibroblast growth factor 2 (FGFR2) was identified in rat osteosarcoma (ROS) cells by an expression cloning strategy. Unlike other tyrosine kinase receptors activated by N-terminal truncation in tumors, this receptor, FGFR2-ROS, contains an altered C terminus generated from chromosomal rearrangement with a novel gene, designated FGFR activating gene 1 (FRAG1). While the removal of the C terminus slightly activates FGFR2, the presence of the FRAG1 sequence drastically stimulates the transforming activity and autophosphorylation of the receptor. FGFR2-ROS is expressed as a unusually large protein and is highly phosphorylated in NIH 3T3 transfectants. FRAG1 is ubiquitously expressed and encodes a predicted protein of 28 kDa lacking significant structural similarity to known proteins. Epitope-tagged FRAG1 protein showed a perinuclear localization by immunofluorescence staining. The highly activated state of FGFR2-ROS appears to be attributed to constitutive dimer formation and higher phosphorylation level as well as possibly altered subcellular localization. These results indicate a unique mechanism of receptor activation by a C terminus alteration through a chromosomal fusion with FRAG1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

delta-Aminolevulinate in plants, algae, cyanobacteria, and several other bacteria such as Escherichia coli and Bacillus subtilis is synthesized from glutamate by means of a tRNA(Glu) mediated pathway. The enzyme glutamyl tRNA(Glu) reductase catalyzes the second step in this pathway, the reduction of tRNA bound glutamate to give glutamate 1-semialdehyde. The hemA gene from barley encoding the glutamyl tRNA(Glu) reductase was expressed in E. coli cells joined at its amino terminal end to Schistosoma japonicum glutathione S-transferase (GST). GST-glutamyl tRNA(Glu) reductase fusion protein and the reductase released from it by thrombin digestion catalyzed the reduction of glutamyl tRNA(Glu) to glutamate 1-semialdehyde. The specific activity of the fusion protein was 120 pmol.micrograms-1.min-1. The fusion protein used tRNA(Glu) from barley chloroplasts preferentially to E. coli tRNA(Glu) and its activity was inhibited by hemin. It migrated as an 82-kDa polypeptide with SDS/PAGE and eluted with an apparent molecular mass of 450 kDa from Superose 12. After removal of the GST by thrombin, the protein migrated as an approximately equal to 60-kDa polypeptide with SDS/PAGE, whereas gel filtration on Superose 12 yielded an apparent molecule mass of 250 kDa. Isolated fusion protein contained heme, which could be reduced by NADPH and oxidized by air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibody-based therapies for cancer rely on the expression of defined antigens on neoplastic cells. However, most tumors display heterogeneity in the expression of such antigens. We demonstrate here that antibody-targeted interleukin 2 delivery overcomes this problem by induction of a host immune response. Immunohistochemical analysis demonstrated that the antibody-interleukin 2 fusion protein-induced eradication of established tumors is mediated by host immune cells, particularly CD8+ T cells. Because of this cellular immune response, antibody-directed interleukin 2 therapy is capable to address established metastases displaying substantial heterogeneity in expression of the targeted antigen. This effector mechanism further enables the induction of partial regressions of large subcutaneous tumors that exceeded more than 5% of the body weight. These observations indicate that antibody-directed cytokine delivery offers an effective new tool for cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have genetically replaced the native receptor binding domain of diphtheria toxin with an extended form of substance P (SP): SP-glycine (SP-Gly). The resulting fusion protein, DAB389SP-Gly, is composed of the catalytic and transmembrane domains of diphtheria toxin genetically coupled to SP-Gly. Because native SP requires a C-terminal amide moiety to bind with high affinity to the SP receptor, the precursor form of the fusion toxin, DAB389SP-Gly, was converted to DAB389SP by treatment with peptidylglycine-alpha-amidating monooxygenase. We demonstrate that following conversion, DAB389SP is selectively cytotoxic for cell lines that express either the rat or the human SP receptor. We also demonstrate that the cytotoxic action of DAB389SP is mediated via the SP receptor and dependent upon passage through an acidic compartment. To our knowledge, this is the first reported use of a neuropeptide as the targeting ligand for a fusion toxin; and the first instance in which an inactive precursor form of a fusion toxin is converted to the active form by a posttranslational modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human antimelanoma antibody V86 was cloned from a single-chain Fv molecule (scFv) fusion phage library displaying the heavy chain variable domain (VH) and light chain variable domain (VL.) repertoire of a melanoma patient immunized with genetically-modified autologous tumor cells. Previous ELISA tests for binding of the V86 fusion phage to a panel of human metastatic melanoma and carcinoma cell lines and primary cultures of normal melanocytes, endothelial, and fibroblast cells showed that measurable binding occurred only to the melanoma cells. In this communication, the strict specificity of V86 for melanoma cells was confirmed by immunohistochemical staining tests with cultured cells and frozen tissue sections. The V86 fusion phage stained melanoma cell lines but did not stain carcinoma cell lines or cultured normal cells; V86 also stained specifically the melanoma cells in sections of metastatic tissue but did not stain any of the cells in sections from normal skin, lung, and kidney or from metastatic colon and ovarian carcinomas and a benign nevus. An unexpected finding is that V86 contains a complete VH domain but only a short segment of a VL, domain, which terminates before the CDR1 region. This VL deletion resulted from the occurrence in the VL cDNA of a restriction site, which was cleaved during construction of the scFv library. Thus V86 is essentially a VH antibody. The effect of adding a VI. domain to V86 was examined by constructing scFv fusion phage libraries in which V86 was coupled to Vlambda or Vkappa domains from the original scFv library of the melanoma patient and then panning the libraries against melanoma cells to enrich for the highest affinity antibody clones. None of the V86-Vlambda clones showed significant binding to melanoma cells in ELISA tests; although binding occurred with most of the V86-Vkappa clones, it was generally weaker than the binding of V86. These results indicate that most of the VL domains in the original scFv library reduce or eliminate the affinity of V86 for melanoma cells. Accordingly, VH libraries could provide access to anti-tumor antibodies that might not be detected in scFv or Fab libraries because of the incompatibility of most randomly paired VH and VL, domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The translocation t(10;11)(p13;q14) is a recurring chromosomal abnormality that has been observed in patients with acute lymphoblastic leukemia as well as acute myeloid leukemia. We have recently reported that the monocytic cell line U937 has a t(10;11)(p13;q14) translocation. Using a combination of positional cloning and candidate gene approach, we cloned the breakpoint and were able to show that AF10 is fused to a novel gene that we named CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene) located at 11q14. AF10, a putative transcription factor, had recently been cloned as one of the fusion partners of MLL. CALM has a very high homology in its N-terminal third to the murine ap-3 gene which is one of the clathrin assembly proteins. The N-terminal region of ap-3 has been shown to bind to clathrin and to have a high-affinity binding site for phosphoinositols. The identification of the CALM/AF10 fusion gene in the widely used U937 cell line will contribute to our understanding of the malignant phenotype of this line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Promyelocytic leukemia zinc finger-retinoic acid receptor a (PLZF-RARalpha), a fusion receptor generated as a result of a variant t(11;17) chromosomal translocation that occurs in a small subset of acute promyelocytic leukemia (APL) patients, has been shown to display a dominant-negative effect against the wild-type RARalpha/retinoid X receptor alpha (RXRalpha). We now show that its N-terminal region (called the POZ-domain), which mediates protein-protein interaction as well as specific nuclear localization of the wild-type PLZF and chimeric PLZF-RARalpha proteins, is primarily responsible for this activity. To further investigate the mechanisms of PLZF-RARalpha action, we have also studied its ligand-receptor, protein-protein, and protein-DNA interaction properties and compared them with those of the promyelocytic leukemia gene (PML)-RARalpha, which is expressed in the majority of APLs as a result of t(15;17) translocation. PLZF-RARalpha and PML-RARalpha have essentially the same ligand-binding affinities and can bind in vitro to retinoic acid response elements (RAREs) as homodimers or heterodimers with RXRalpha. PLZF-RARalpha homodimerization and heterodimerization with RXRalpha were primarily mediated by the POZ-domain and RARalpha sequence, respectively. Despite having identical RARalpha sequences, PLZF-RARalpha and PML-RARalpha homodimers recognized with different affinities distinct RAREs. Furthermore, PLZF-RARalpha could heterodimerize in vitro with the wild-type PLZF, suggesting that it may play a role in leukemogenesis by antagonizing actions of not only the retinoid receptors but also the wild-type PLZF and possibly other POZ-domain-containing regulators. These different protein-protein interactions and the target gene specificities of PLZF-RARalpha and PML-RARalpha may underlie, at least in part, the apparent resistance of APL with t(11;17) to differentiation effects of all-trans-retinoic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibody-cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody-interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cgamma1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumor-specific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumor-specific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.