63 resultados para Francesco II Borbone, King of the Two Sicilies, 1836-1894.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During early mammalian embryogenesis, one of the two X chromosomes in somatic cells of the female becomes inactivated through a process that is thought to depend on a unique initiator region, the X-chromosome inactivation center (Xic). The recently characterized Xist sequence (X-inactive-specific transcript) is thought to be a possible candidate for Xic. In mice a further genetic element, the X chromosome-controlling element (Xce), is also known to influence the choice of which of the two X chromosomes is inactivated. We report that a region of the mouse X chromosome lying 15 kb distal to Xist contains several sites that show hypermethylation specifically associated with the active X chromosome. Analysis of this region in various Xce strains has revealed a correlation between the strength of the Xce allele carried and the methylation status of this region. We propose that such a region could be involved in the initial stages of the inactivation process and in particular in the choice of which of the two X chromosomes present in a female cell will be inactivated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of potentially catalytic groups into DNA is of interest for the in vitro selection of novel deoxyribozymes. We have devised synthetic routes to a series of three C7 modified 7-deaza-dATP derivatives with pendant aminopropyl, Z-aminopropenyl and aminopropynyl side chains. These modified triphosphates have been tested as substrates for Taq polymerase during PCR. All the modifications are tolerated by this enzyme, with the aminopropynyl side chain giving the best result. Most protein enzymes have more than one type of catalytic group located in their active site. By using C5-imidazolyl-modified dUTPs together with 3-(aminopropynyl)-7-deaza-dATP in place of the natural nucleotides dTTP and dATP, we have demonstrated the simultaneous incorporation of both amino and imidazolyl moieties into a DNA molecule during PCR. The PCR product containing the four natural bases was fully digested by XbaI, while PCR products containing the modified 7-deaza-dATP analogues were not cleaved. Direct evidence for the simultaneous incorporation during PCR of an imidazole-modified dUTP and an amino-modified 7-deaza-dATP has been obtained using mass spectrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although mitochondrial DNA is known to encode a limited number (<20) of the polypeptide components of respiratory complexes I, III, IV, and V, genes for components of complex II [succinate dehydrogenase (ubiquinone); succinate:ubiquinone oxidoreductase, EC 1.3.5.1] are conspicuously lacking in mitochondrial genomes so far characterized. Here we show that the same three subunits of complex II are encoded in the mitochondrial DNA of two phylogenetically distant eukaryotes, Porphyra purpurea (a photosynthetic red alga) and Reclinomonas americana (a heterotrophic zooflagellate). These complex II genes, sdh2, sdh3, and sdh4, are homologs, respectively, of Escherichia coli sdhB, sdhC, and sdhD. In E. coli, sdhB encodes the iron-sulfur subunit of succinate dehydrogenase (SDH), whereas sdhC and sdhD specify, respectively, apocytochrome b558 and a hydrophobic 13-kDa polypeptide, which together anchor SDH to the inner mitochondrial membrane. Amino acid sequence similarities indicate that sdh2, sdh3, and sdh4 were originally encoded in the protomitochondrial genome and have subsequently been transferred to the nuclear genome in most eukaryotes. The data presented here are consistent with the view that mitochondria constitute a monophyletic lineage.