62 resultados para Endogenous retroviruses
Resumo:
We report the detection of endogenous intracellular glutathionyl (GS.) radicals in the intact neuroblastoma cell line NCB-20 under oxidative stress. Spin-trapping and electron paramagnetic resonance (EPR) spectroscopic methods were used for monitoring the radicals. The cells incubated with the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) were challenged with H2O2 generated by the enzymic reaction of glucose/glucose oxidase. These cells exhibit the EPR spectrum of the GS. radical adduct of DMPO (DMPO-.SG) without exogenous reduced glutathione (GSH). The identity of this radical adduct was confirmed by observing hyperfine coupling constants identical to previously reported values in in vitro studies, which utilized known enzymic reactions, such as horseradish peroxidase and Cu/Zn superoxide dismutase, with GSH and H2O2 as substrates. The formation of the GS. radicals required viable cells and continuous biosynthesis of GSH. No significant effect on the resonance amplitude by the addition of a membrane-impermeable paramagnetic broadening agent indicated that these radicals were located inside the intact cell. N-Acetyl-L-cysteine (NAC)-treated cells produced NAC-derived free radicals (NAC.) in place of GS. radicals. The time course studies showed that DMPO-.SG formation exhibited a large increase in its concentration after a lag period, whereas DMPO-NAC. formation from NAC-treated cells did not show this sudden increase. These results were discussed in terms of the limit of antioxidant enzyme defenses in cells and the potential role of the GS. radical burst in activation of the transcription nuclear factor NF-kappa B in response to oxidative stress.
Resumo:
Using an antibody highly specific for D-serine conjugated to glutaraldehyde, we have localized endogenous D-serine in rat brain. Highest levels of D-serine immunoreactivity occur in the gray matter of the cerebral cortex, hippocampus, anterior olfactory nucleus, olfactory tubercle, and amygdala. Localizations of D-serine immunoreactivity correlate closely with those of D-serine binding to the glycine modulatory site of the N-methyl-D-aspartate (NMDA) receptor as visualized by autoradiography and are inversely correlated to the presence of D-amino acid oxidase. D-Serine is enriched in process-bearing glial cells in neuropil with the morphology of protoplasmic astrocytes. In glial cultures of rat cerebral cortex, D-serine is enriched in type 2 astrocytes. The release of D-serine from these cultures is stimulated by agonists of non-NMDA glutamate receptors, suggesting a mechanism by which astrocyte-derived D-serine could modulate neurotransmission. D-Serine appears to be the endogenous ligand for the glycine site of NMDA receptors.