65 resultados para Dq0 transformation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gram-negative bacterial pathogen Neisseria gonorrhoeae is naturally competent for transformation with species-related DNA. We show here that two phase-variable pilus-associated proteins, the major pilus subunit (pilin, or PilE) and PilC, a factor known to function in the assembly and adherence of gonococcal pili, are essential for transformation competence. The PilE and PilC proteins are necessary for the conversion of linearized plasmid DNA carrying the Neisseria-specific DNA uptake signal into a DNase-resistant form. The biogenesis of typical pilus fibers is neither essential nor sufficient for this process. DNA uptake deficiency of defined piliated pilC1,2 double mutants can be complemented by expression of a cloned pilC2 gene in trans. The PilC defect can also be restored by the addition of purified PilC protein, or better, pili containing PilC protein, to the mutant gonococci. Our data suggest that the two phase-variable Pil proteins act on the bacterial cell surface and cooperate in DNA recognition and/or outer membrane translocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferators induce qualitatively predictable pleiotropic responses, including development of hepatocellular carcinomas in rats and mice despite the inability of these compounds to interact with and damage DNA directly. In view of the nongenotoxic nature of peroxisome proliferators, it has been postulated that hepatocarcinogenesis by this class of chemicals is due to a receptor-mediated process leading to transcriptional activation of H2O2-generating peroxisomal fatty acyl-CoA oxidase (ACOX) in liver. To test this hypothesis, we overexpressed rat ACOX in African green monkey kidney cells (CV-1 cells) under control of the cytomegalovirus promoter. A stably transfected CV-1 cell line overexpressing rat ACOX, designated CV-ACOX4, when exposed to a fatty acid substrate (150 microM linoleic acid) for 2-6 weeks, formed transformed foci, grew efficiently in soft agar, and developed adenocarcinomas when transplanted into nude mice. These findings indicate that sustained overexpression of H2O2-generating ACOX causes cell transformation and provide further support for the role of peroxisome proliferation in hepatocarcinogenesis induced by peroxisome proliferators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prolonged incubation of NIH 3T3 cells under the growth constraint of confluence results in the death of some cells in a manner suggestive of apoptosis. Successive rounds of prolonged incubation at confluence of the surviving cells produce increasing neoplastic transformation in the form of increments in saturation density and transformed focus formation. Cells from the postconfluent cultures are given a recovery period of various lengths to remove the direct inhibitory effect of confluence before their growth properties are studied. It is found that with each round of confluence the exponential growth rate of the cells at low densities gets lower and the size of isolated colonies of the same cells shows a similar progressive reduction. The decreased growth rate of cells from the third round of confluence persists for > 60 generations of growth at low density. The proportion of colonies containing giant cells is much higher after a 2-day recovery from confluence than after a 7-day recovery. Retardation of growth at low density and increased saturation density appear to be two sides of the same coin: both occur in the entire population of cells and precede the formation of transformed foci. We propose that the slowdown in growth and the formation of giant cells result from heritable damage to the cells, which in turn drives their transformation. Similar results have been reported for the survivors of x-irradiation and of treatment with chemical carcinogens and are associated with the aging process in animals. We suggest that these changes result from free radical damage to membrane lipids with particular damage to lysosomes. Proteases and nucleases would then be released to progressively modify the growth behavior and genetic stability of the cells toward autonomous proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conditional oncogene expression in transgenic mice is of interest for studying the oncoprotein requirements during tumorigenesis and for deriving cell lines that can be induced to undergo growth arrest and enhance their differentiated functions. We utilized the bacterial tetracycline (Tet)-resistance operon regulatory system (tet) from Tn10 of Escherichia coli to control simian virus 40 (SV40) large tumor (T) antigen (TAg) gene expression and to generate conditionally transformed pancreatic beta cells in transgenic mice. A fusion protein containing the tet repressor (tetR) and the activating domain of the herpes simplex virus protein VP16, which converts the repressor into a transcription activator, was produced in beta cells of transgenic mice under control of the insulin promoter. In a separate lineage of transgenic mice, the TAg gene was introduced under control of a tandem array of tet operator sequences and a minimal promoter, which by itself is not sufficient for gene expression. Mice from the two lineages were then crossed to generate double-transgenic mice. Expression of the tetR fusion protein in beta cells activated TAg transcription, resulting in the development of beta-cell tumors. Tumors arising in the absence of Tet were cultured to derive a stable beta-cell line. Cell incubation in the presence of Tet led to inhibition of proliferation, as shown by decreased BrdUrd and [3H]thymidine incorporation. The Tet derivative anhydrotetracycline showed a 100-fold stronger inhibition compared with Tet. When administered in vivo, Tet efficiently inhibited beta-cell proliferation. These findings indicate that transformed beta cells selected for growth during a tumorigenesis process in vivo maintain a dependence on the continuous presence of the TAg oncoprotein for their proliferation. This system provides an approach for generation of beta-cell lines for cell therapy of diabetes as well as conditionally transformed cell lines from other cell types of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA sequencing, RNA mapping, and protein expression experiments revealed the presence of a gene, tfoX+, encoding a 24.9-kDa polypeptide, that is transcribed divergently from a common promoter region with the Haemophilus influenzae rec-1+ gene. H. influenzae strains mutant for tfoX failed to bind transforming DNA and were transformation deficient. Primer extension experiments utilizing in vivo total RNA from precompetent and competent H. influenzae cells demonstrated that transcription of tfoX+ increased immediately upon competence induction, suggesting that tfoX+ is an early competence gene. Similar experiments showed that the expression of the late competence-specific gene, com101A+, was tfoX+ dependent. Moreover, expression of plasmid-borne tfoX+ in H. influenzae resulted in constitutive competence. The addition of cyclic adenosine monophosphate (cAMP) to strains carrying a tfoX::lacZ operon fusion resulted in an immediate increase in beta-galactosidase activity that correlated with an increase in genetic transformability. Collectively, our results suggest that TfoX may play a key role in the development of genetic competence by regulating the expression of late competence-specific genes.