121 resultados para Diferenciació cel·lular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major constituent of senile plaques in Alzheimer’s disease is a 42-aa peptide, referred to as β-amyloid (Aβ). Aβ is generated from a family of differentially spliced, type-1 transmembrane domain (TM)-containing proteins, called APP, by endoproteolytic processing. The major, relatively ubiquitous pathway of APP metabolism in cell culture involves cleavage by α-secretase, which cleaves within the Aβ sequence, thus precluding Aβ formation and deposition. An alternate secretory pathway, enriched in neurons and brain, leads to cleavage of APP at the N terminus of the Aβ peptide by β-secretase, thus generating a cell-associated β-C-terminal fragment (β-CTF). A pathogenic mutation at codons 670/671 in APP (APP “Swedish”) leads to enhanced cleavage at the β-secretase scissile bond and increased Aβ formation. An inhibitor of vacuolar ATPases, bafilomycin, selectively inhibits the action of β-secretase in cell culture, suggesting a requirement for an acidic intracellular compartment for effective β-secretase cleavage of APP. β-CTF is cleaved in the TM domain by γ-secretase(s), generating both Aβ 1–40 (90%) and Aβ 1–42 (10%). Pathogenic mutations in APP at codon 717 (APP “London”) lead to an increased proportion of Aβ 1–42 being produced and secreted. Missense mutations in PS-1, localized to chromosome 14, are pathogenic in the majority of familial Alzheimer’s pedigrees. These mutations also lead to increased production of Aβ 1–42 over Aβ 1–40. Knockout of PS-1 in transgenic animals leads to significant inhibition of production of both Aβ 1–40 and Aβ 1–42 in primary cultures, indicating that PS-1 expression is important for γ-secretase cleavages. Peptide aldehyde inhibitors that block Aβ production by inhibiting γ-secretase cleavage of β-CTF have been discovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decade ago it was discovered that mature birds are able to regenerate hair cells, the receptors for auditory perception. This surprising finding generated hope in the field of auditory neuroscience that new hair cells someday may be coaxed to form in another class of warm-blooded vertebrates, mammals. We have made considerable progress toward understanding some cellular and molecular events that lead to hair cell regeneration in birds. This review discusses our current understanding of avian hair cell regeneration, with some comparisons to other vertebrate classes and other regenerative systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both mammals and birds use the interaural time difference (ITD) for localization of sound in the horizontal plane. They may localize either real or phantom sound sources, when the signal consists of a narrow frequency band. This ambiguity does not occur with broadband signals. A plot of impulse rates or amplitude of excitatory postsynaptic potentials against ITDs (ITD curve) consists of peaks and troughs. In the external nucleus (ICX) of the owl's inferior colliculus, ITD curves show multiple peaks when the signal is narrow-band, such as tones. Of these peaks, one occurs at ITDi, which is independent of frequency, and others at ITDi ± T, where T is the tonal period. The ITD curve of the same neuron shows a large peak (main peak) at ITDi and no or small peaks (side peaks) at ITDi ± T, when the signal is broadband. ITD curves for postsynaptic potentials indicate that ICX neurons integrate the results of binaural cross-correlation in different frequency bands. However, the difference between the main and side peaks is small. ICX neurons further enhance this difference in the process of converting membrane potentials to impulse rates. Inhibition also appears to augment the difference between the main and side peaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell–cell recognition often requires the formation of a highly organized pattern of receptor proteins (a synapse) in the intercellular junction. Recent experiments [e.g., Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. (1998) Nature (London) 395, 82–86; Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227; and Davis, D. M., Chiu, I., Fassett, M., Cohen, G. B., Mandelboim, O. & Strominger, J. L. (1999) Proc. Natl. Acad. Sci. USA 96, 15062–15067] vividly demonstrate a complex evolution of cell shape and spatial receptor–ligand patterns (several microns in size) in the intercellular junction during immunological synapse formation. The current view is that this dynamic rearrangement of proteins into organized supramolecular activation clusters is driven primarily by active cytoskeletal processes [e.g., Dustin, M. L. & Cooper, J. A. (2000) Nat. Immunol. 1, 23–29; and Wulfing, C. & Davis, M. M. (1998) Science 282, 2266–2269]. Here, aided by a quantitative analysis of the relevant physico-chemical processes, we demonstrate that the essential characteristics of synaptic patterns observed in living cells can result from spontaneous self-assembly processes. Active cellular interventions are superimposed on these self-organizing tendencies and may also serve to regulate the spontaneous processes. We find that the protein binding/dissociation characteristics, protein mobilities, and membrane constraints measured in the cellular environment are delicately balanced such that the length and time scales of spontaneously evolving patterns are in near-quantitative agreement with observations for synapse formation between T cells and supported membranes [Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227]. The model we present provides a common way of analyzing immunological synapse formation in disparate systems (e.g., T cell/antigen-presenting cell junctions with different MHC-peptides, natural killer cells, etc.).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

JC virus is activated to replicate in glial cells of many AIDS patients with neurological disorders. In human glial cells, the human immunodeficiency virus 1 (HIV-1) Tat protein activates the major late promoter of JC virus through a Tat-responsive DNA element, termed upTAR, which is a recognition site for cellular Purα, a sequence-specific single-stranded DNA binding protein implicated in cell cycle control of DNA replication and transcription. Tat interacts with two leucine-rich repeats in Purα to form a complex that can be immunoprecipitated from cell extracts. Tat enhances the ability of purified glutathione S-transferase-Purα (GST-Purα) to bind the upTAR element. Tat acts synergistically with Purα, in a cell-cycle-dependent manner, to activate transcription at an upTAR element placed upstream of a heterologous promoter. Since Purα is ubiquitously expressed in human cells and since PUR elements are located near many promoters and origins of replication, the Tat-Purα interaction may be implicated in effects of HIV-1 throughout the full range of HIV-1-infected cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracellular transport and localization of cellular components are essential for the functional organization and plasticity of eukaryotic cells. Although the elucidation of protein transport mechanisms has made impressive progress in recent years, intracellular transport of RNA remains less well understood. The National Academy of Sciences Colloquium on Molecular Kinesis in Cellular Function and Plasticity therefore was devised as an interdisciplinary platform for participants to discuss intracellular molecular transport from a variety of different perspectives. Topics covered at the meeting included RNA metabolism and transport, mechanisms of protein synthesis and localization, the formation of complex interactive protein ensembles, and the relevance of such mechanisms for activity-dependent regulation and synaptic plasticity in neurons. It was the overall objective of the colloquium to generate momentum and cohesion for the emerging research field of molecular kinesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-lasting forms of activity-dependent synaptic plasticity involve molecular modifications that require gene expression. Here, we describe a cellular mechanism that mediates the targeting newly synthesized gene transcripts to individual synapses where they are locally translated. The features of this mechanism have been revealed through studies of the intracellular transport and synaptic targeting of the mRNA for a recently identified immediate early gene called activity-regulated cytoskeleton-associated protein Arc. Arc is strongly induced by patterns of synaptic activity that also induce long-term potentiation, and Arc mRNA is then rapidly delivered into dendrites after episodes of neuronal activation. The newly synthesized Arc mRNA localizes selectively at synapses that recently have been activated, and the encoded protein is assembled into the synaptic junctional complex. The dynamics of trafficking of Arc mRNA reveal key features of the mechanism through which synaptic activity can both induce gene expression and target particular mRNA transcripts to the active synapses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human cytomegalovirus (HCMV) infection alters the expression of many cellular genes, including IFN-stimulated genes (ISGs) [Zhu, H., Cong, J.-P., Mamtora, G., Gingeras, T. & Shenk, T. (1998) Proc. Natl. Acad. Sci. USA 95, 14470–14475]. By using high-density cDNA microarrays, we show that the HCMV-regulated gene expression profile in fibroblasts does not differ substantially from the response generated by IFN. Furthermore, we identified the specific viral component triggering this response as the envelope glycoprotein B (gB). Cells treated with gB, but not other herpesviral glycoproteins, exhibited the same transcriptional profile as HCMV-infected cells. Thus, the interaction of gB with its as yet unidentified cellular receptor is the principal mechanism by which HCMV alters cellular gene expression early during infection. These findings highlight a pioneering paradigm for the consequences of virus–receptor interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transduction of energetic signals into membrane electrical events governs vital cellular functions, ranging from hormone secretion and cytoprotection to appetite control and hair growth. Central to the regulation of such diverse cellular processes are the metabolism sensing ATP-sensitive K+ (KATP) channels. However, the mechanism that communicates metabolic signals and integrates cellular energetics with KATP channel-dependent membrane excitability remains elusive. Here, we identify that the response of KATP channels to metabolic challenge is regulated by adenylate kinase phosphotransfer. Adenylate kinase associates with the KATP channel complex, anchoring cellular phosphotransfer networks and facilitating delivery of mitochondrial signals to the membrane environment. Deletion of the adenylate kinase gene compromised nucleotide exchange at the channel site and impeded communication between mitochondria and KATP channels, rendering cellular metabolic sensing defective. Assigning a signal processing role to adenylate kinase identifies a phosphorelay mechanism essential for efficient coupling of cellular energetics with KATP channels and associated functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four critical stages of embryogenesis, including callus induction, cellular acquisition of morphogenetic competence, expression of embryogenic program, and development and maturation of somatic embryos during somatic embryogenesis from leaf discs of eggplant (Solanum melongena L.), were identified by scanning electron microscopy. Temporal changes in arginine decarboxylase (ADC) activity and polyamines (PAs) during critical stages of embryogenesis revealed that high levels of PAs (especially putrescine [PUT]), due to higher ADC activity in discs from the apical region (with high embryogenic capacity) than from the basal region of the leaf (with poor embryogenic capacity), were correlated with differential embryogenesis response. Kinetic studies of the up- and down-regulation of embryogenesis revealed that PUT and difluoromethylarginine pretreatments were most effective before the onset of embryogenesis. Basal discs pretreated with PUT for 4 to 7 d showed improved embryogenesis that was comparable to apical discs. PA content at various critical steps in embryogenesis from basal discs were found to be comparable to that of apical discs following adjustments of cellular PA content by PUT. In contrast, pretreatment of apical discs with difluoromethylarginine for 3 d significantly reduced ADC activity, cellular PA content, and embryogenesis to levels that were comparable to basal discs. Discs from the basal region of leaves treated with PUT for 3 d during the identified stages of embryogenesis improved their embryogenic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Id family of helix–loop–helix (HLH) transcriptional regulatory proteins does not possess a basic DNA-binding domain and functions as a negative regulator of basic HLH transcription factors. Id proteins coordinate cell growth and differentiation pathways within mammalian cells and have been shown to regulate G1-S cell-cycle transitions. Although much recent data has implicated Id1 in playing a critical role in modulating cellular senescence, no direct genetic evidence has been reported to substantiate such work. Here we show that Id1-null primary mouse embryo fibroblasts undergo premature senescence despite normal growth profiles at early passage. These cells possess increased expression of the tumor-suppressor protein p16/Ink4a but not p19/ARF, and have decreased cyclin-dependent kinase (cdk) 2 and cdk4 kinase activity. We also show that Id1 is able to directly inhibit p16/Ink4a but not p19/ARF promoter activity via its HLH domain, and that Id1inhibits transcriptional activation at E-boxes within the p16/Ink4a promoter. Our data provide, to our knowledge, the first genetic evidence for a role for Id1 as an inhibitor of cellular senescence and suggest that Id1 functions to delay cellular senescence through repression of p16/Ink4a. Because epigenetic and genetic abrogation of p16/Ink4a function has been implicated in the evolution of several human malignancies, we propose that transcriptional regulation of p16/Ink4a may also provide a mechanism for the dysregulation of normal cellular growth controls during the evolution of human malignancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liver responds to multiple types of injury with an extraordinarily well orchestrated and tightly regulated form of regeneration. The response to partial hepatectomy has been used as a model system to elucidate the molecular basis of this regenerative response. In this study, we used cyclooxygenase (COX)-selective antagonists and -null mice to determine the role of prostaglandin signaling in the response of liver to partial hepatectomy. The results show that liver regeneration is markedly impaired when both COX-1 and COX-2 are inhibited by indocin or by a combination of the COX-1 selective antagonist, SC-560, and the COX-2 selective antagonist, SC-236. Inhibition of COX-2 alone partially inhibits regeneration whereas inhibition of COX-1 alone tends to delay regeneration. Neither the rise in IL-6 nor the activation of signal transducer and activator of transcription-3 (STAT3) that is seen during liver regeneration is inhibited by indocin or the selective COX antagonists. In contrast, indocin treatment prevents the activation of CREB by phosphorylation that occurs during hepatic regeneration. These data indicate that prostaglandin signaling is required during liver regeneration, that COX-2 plays a particularly important role but COX-1 is also involved, and implicate the activation of CREB rather than STAT3 as the mediator of prostaglandin signaling during liver regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced glycation endproducts (AGEs) are derivatives of nonenzymatic reactions between sugars and protein or lipids, and together with AGE-specific receptors are involved in numerous pathogenic processes associated with aging and hyperglycemia. Two of the known AGE-binding proteins isolated from rat liver membranes, p60 and p90, have been partially sequenced. We now report that the N-terminal sequence of p60 exhibits 95% identity to OST-48, a 48-kDa member of the oligosaccharyltransferase complex found in microsomal membranes, while sequence analysis of p90 revealed 73% and 85% identity to the N-terminal and internal sequences, respectively, of human 80K-H, a 80- to 87-kDa protein substrate for protein kinase C. AGE-ligand and Western analyses of purified oligosaccharyltransferase complex, enriched rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membranes from rat liver or RAW 264.7 macrophages yielded a single protein of approximately 50 kDa recognized by both anti-p60 and anti-OST-48 antibodies, and also exhibited AGE-specific binding. Immunoprecipitated OST-48 from rat rough endoplasmic reticulum fractions exhibited both AGE binding and immunoreactivity to an anti-p60 antibody. Immune IgG raised to recombinant OST-48 and 80K-H inhibited binding of AGE-bovine serum albumin to cell membranes in a dose-dependent manner. Immunostaining and flow cytometry demonstrated the surface expression of OST-48 and 80K-H on numerous cell types and tissues, including mononuclear, endothelial, renal, and brain neuronal and glial cells. We conclude that the AGE receptor components p60 and p90 are identical to OST-48, and 80K-H, respectively, and that they together contribute to the processing of AGEs from extra- and intracellular compartments and in the cellular responses associated with these pathogenic substances.