209 resultados para Cyclin-dependent Kinase-5


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the activities of IFN-γ are the result of STAT1-mediated transcriptional responses. In this study, we show that the BRCA1 tumor suppressor acts in concert with STAT1 to differentially activate transcription of a subset of IFN-γ target genes and mediates growth inhibition by this cytokine. After IFN-γ treatment, induction of the cyclin-dependent kinase inhibitor, p21WAF1, was synergistically activated by BRCA1, whereas the IRF-1 gene was unaffected. Importantly, the differential induction of p21WAF1 was impaired in breast cancer cells homozygous for the mutant BRCA1 5382C allele. Biochemical analysis illustrated that the mechanism of this transcriptional synergy involves interaction between BRCA1 aa 502–802 and the C-terminal transcriptional activation domain of STAT1 including Ser-727 whose phosphorylation is crucial for transcriptional activation. Significantly, STAT1 proteins mutated at Ser-727 bind poorly to BRCA1, reinforcing the importance of Ser-727 in the recruitment of transcriptional coactivators by STAT proteins. These findings reveal a novel mechanism for BRCA1 function in the IFN-γ-dependent tumor surveillance system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In both human and mouse, the Igf2 gene, localized on chromosomes 11 and 7, respectively, is expressed from the paternally inherited chromosome in the majority of tissues. Insulin-like growth factor-II (IGF-II) plays an important role in embryonic growth, and aberrant IGF2 expression has been documented in several human pathologies, such as Beckwith–Wiedemann syndrome (BWS), and a wide variety of tumors. Human and mouse genetic data strongly implicate another gene, CDKN1C (p57kip2), located in the same imprinted gene cluster on human chromosome II, in BWS. p57KIP2 is a cyclin-dependent kinase inhibitor and is required for normal mouse embryonic development. Mutations in CDKN1C (p57kip2) have been identified in a small proportion of patients with BWS, and removal of the gene from mice by targeted mutagenesis produces a phenotype with elements in common with this overgrowth syndrome. Patients with BWS with biallelic expression of IGF2 or with a CDKN1C (p57kip2) mutation, as well as overlapping phenotypes observed in two types of mutant mice, the p57kip2 knockout and IGF-II-overexpressing mice, strongly suggest that the genes may act in a common pathway of growth control in situations where Igf2 expression is abnormal. Herein, we show that p57kip2 expression is reduced on IGF-II treatment of primary embryo fibroblasts in a dose-dependent manner. In addition, p57kip2 expression is down-regulated in mice with high serum levels of IGF-II. These data suggest that the effects of increased IGF-II in BWS may, in part, be mediated through a decrease in p57kip2 gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive assay using biotinylated ubiquitin revealed extensive ubiquitination of the large subunit of RNA polymerase II during incubations of transcription reactions in vitro. Phosphorylation of the repetitive carboxyl-terminal domain of the large subunit was a signal for ubiquitination. Specific inhibitors of cyclin-dependent kinase (cdk)-type kinases suppress the ubiquitination reaction. These kinases are components of transcription factors and have been shown to phosphorylate the carboxyl-terminal domain. In both regulation of transcription and DNA repair, phosphorylation of the repetitive carboxyl-terminal domain by kinases might signal degradation of the polymerase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The commitment of cells to replicate and divide correlates with the activation of cyclin-dependent kinases and the inactivation of Rb, the product of the retinoblastoma tumor suppressor gene. Rb is a target of the cyclin-dependent kinases and, when phosphorylated, is inactivated. Biochemical studies exploring the nature of the relationship between cyclin-dependent kinase inhibitors and Rb have supported the hypothesis that these proteins are on a linear pathway regulating commitment. We have been able to study this relationship by genetic means by examining the phenotype of Rb+/−p27−/− mice. Tumors arise from the intermediate lobe cells of the pituitary gland in p27−/− mice, as well as in Rb+/− mice after loss of the remaining wild-type allele of Rb. Using these mouse models, we examined the genetic interaction between Rb and p27. We found that the development of pituitary tumors in Rb+/− mice correlated with a reduction in p27 mRNA and protein expression. To determine whether the loss of p27 was an indirect consequence of tumor formation or a contributing factor to the development of this tumor, we analyzed the phenotype of Rb+/−p27−/− mice. We found that these mice developed pituitary adenocarcinoma with loss of the remaining wild-type allele of Rb and a high-grade thyroid C cell carcinoma that was more aggressive than the disease in either Rb+/− or p27−/− mice. Importantly, we detected both pituitary and thyroid tumors earlier in the Rb+/−p27−/− mice. We therefore propose that Rb and p27 cooperate to suppress tumor development by integrating different regulatory signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interface between apoptosis (programmed cell death) and the cell cycle is essential to preserve homeostasis and genomic integrity. Here, we show that survivin, an inhibitor of apoptosis over-expressed in cancer, physically associates with the cyclin-dependent kinase p34cdc2 on the mitotic apparatus, and is phosphorylated on Thr34 by p34cdc2-cyclin B1, in vitro and in vivo. Loss of phosphorylation on Thr34 resulted in dissociation of a survivin-caspase-9 complex on the mitotic apparatus, and caspase-9-dependent apoptosis of cells traversing mitosis. These data identify survivin as a mitotic substrate of p34cdc2-cyclin B1 and suggest that survivin phosphorylation on Thr34 may be required to preserve cell viability at cell division. Manipulation of this pathway may facilitate the elimination of cancer cells at mitosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PTEN/MMAC1/TEP1 is a tumor suppressor that possesses intrinsic phosphatase activity. Deletions or mutations of its encoding gene are associated with a variety of human cancers. However, very little is known about the molecular mechanisms by which this important tumor suppressor regulates cell growth. Here, we show that PTEN expression potently suppressed the growth and tumorigenicity of human glioblastoma U87MG cells. The growth suppression activity of PTEN was mediated by its ability to block cell cycle progression in the G1 phase. Such an arrest correlated with a significant increase of the cell cycle kinase inhibitor p27KIP1 and a concomitant decrease in the activities of the G1 cyclin-dependent kinases. PTEN expression also led to the inhibition of Akt/protein kinase B, a serine-threonine kinase activated by the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway. In addition, the effect of PTEN on p27KIP1 and the cell cycle can be mimicked by treatment of U87MG cells with LY294002, a selective inhibitor of PI 3-kinase. Taken together, our studies suggest that the PTEN tumor suppressor modulates G1 cell cycle progression through negatively regulating the PI 3-kinase/Akt signaling pathway, and one critical target of this signaling process is the cyclin-dependent kinase inhibitor p27KIP1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We constructed a dual regulated expression vector cassette (pDuoRex) whereby two heterologous genes can be independently regulated via streptogramin- and tetracycline-responsive promoters. Two different constructs containing growth-promoting and growth-inhibiting genes were stably transfected in recombinant Chinese hamster ovary (CHO) cells that express the streptogramin- and tetracycline-dependent transactivators in a dicistronic configuration. An optimally balanced heterologous growth control scenario was achieved by reciprocal expression of the growth-inhibiting human cyclin-dependent kinase inhibitor p27Kip1 in sense (p27Kip1S) and antisense (p27Kip1AS) orientation. Exclusive expression of p27Kip1S resulted in complete G1-phase-specific growth arrest, while expression of only p27Kip1AS showed significantly increased proliferation compared to control cultures (both antibiotics present), presumably by decreasing host cell p27Kip1 expression. In a second system, a derivative of pDuoRex encoding streptogramin-responsive expression of the growth-promoting SV40 small T antigen (sT) and tetracycline-regulated expression of p27Kip1 was stably transfected into CHO cells. Expression of sT alone resulted in an increase in cell proliferation, but the expression of p27Kip1 failed to provide the expected G1-specific growth arrest despite having demonstrated expression of the protein. This illustrates the difficulty in balancing the complex pathways underlying cell proliferation control through the expression of two functionally distinct genes involved in those pathways, and how a single-gene sense/antisense approach using pDuoRex can overcome this barrier to complete metabolic engineering control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) inhibits proliferation both in vitro and in vivo, and overexpression of p21 in normal and tumor cell lines results in cell cycle arrest. In contrast, ectopic expression of Myc alleviates G1 cell cycle arrest. Recent studies showed that Myc can repress p21 transcription, thereby overriding a p21-mediated cell cycle checkpoint. We found that activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen in mouse cells resulted in suppression of endogenous p21 transcription. This effect was observed in the absence of de novo protein synthesis and was independent of histone deacetylase activity. In transient transfection studies, Myc effectively repressed p21 promoter constructs containing only 119 bp of sequence upstream of the transcription start site. This region contains multiple Sp1-binding sites and a potential initiator element, but no canonical Myc DNA-binding sites. Deletion of the potential initiator element does not affect repression of the p21 promoter by c-Myc. Coimmunoprecipitation and glutathione S-transferase pull-down experiments demonstrate that c-Myc may form complexes with Sp1/Sp3. We found that the central region of c-Myc interacts with the zinc finger domain of Sp1. Because Sp1 is required for p21 transcription, it is possible that Myc may down-regulate p21 transcription, at least in part, by sequestering Sp1. Repression of the p21 promoter may contribute to the ability of c-Myc to promote cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skp2 is a member of the F-box family of substrate-recognition subunits of SCF ubiquitin–protein ligase complexes that has been implicated in the ubiquitin-mediated degradation of several key regulators of mammalian G1 progression, including the cyclin-dependent kinase inhibitor p27, a dosage-dependent tumor suppressor protein. In this study, we examined Skp2 and p27 protein expression by immunohistochemistry in normal oral epithelium and in different stages of malignant oral cancer progression, including dysplasia and oral squamous cell carcinoma. We found that increased levels of Skp2 protein are associated with reduced p27 in a subset of oral epithelial dysplasias and carcinomas compared with normal epithelial controls. Tumors with high Skp2 (>20% positive cells) expression invariably showed reduced or absent p27 and tumors with high p27 (>20% positive cells) expression rarely showed Skp2 positivity. Increased Skp2 protein levels were not always correlated with increased cell proliferation (assayed by Ki-67 staining), suggesting that alterations of Skp2 may contribute to the malignant phenotype without affecting proliferation. Skp2 protein overexpression may lead to accelerated p27 proteolysis and contribute to malignant progression from dysplasia to oral epithelial carcinoma. Moreover, we also demonstrate that Skp2 has oncogenic potential by showing that Skp2 cooperates with H-RasG12V to malignantly transform primary rodent fibroblasts as scored by colony formation in soft agar and tumor formation in nude mice. The observations that Skp2 can mediate transformation and is up-regulated during oral epithelial carcinogenesis support a role for Skp2 as a protooncogene in human tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Id family of helix–loop–helix (HLH) transcriptional regulatory proteins does not possess a basic DNA-binding domain and functions as a negative regulator of basic HLH transcription factors. Id proteins coordinate cell growth and differentiation pathways within mammalian cells and have been shown to regulate G1-S cell-cycle transitions. Although much recent data has implicated Id1 in playing a critical role in modulating cellular senescence, no direct genetic evidence has been reported to substantiate such work. Here we show that Id1-null primary mouse embryo fibroblasts undergo premature senescence despite normal growth profiles at early passage. These cells possess increased expression of the tumor-suppressor protein p16/Ink4a but not p19/ARF, and have decreased cyclin-dependent kinase (cdk) 2 and cdk4 kinase activity. We also show that Id1 is able to directly inhibit p16/Ink4a but not p19/ARF promoter activity via its HLH domain, and that Id1inhibits transcriptional activation at E-boxes within the p16/Ink4a promoter. Our data provide, to our knowledge, the first genetic evidence for a role for Id1 as an inhibitor of cellular senescence and suggest that Id1 functions to delay cellular senescence through repression of p16/Ink4a. Because epigenetic and genetic abrogation of p16/Ink4a function has been implicated in the evolution of several human malignancies, we propose that transcriptional regulation of p16/Ink4a may also provide a mechanism for the dysregulation of normal cellular growth controls during the evolution of human malignancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Saccharomyces cerevisiae, entry into mitosis requires activation of the cyclin-dependent kinase Cdc28 in its cyclin B (Clb)-associated form. Clb-bound Cdc28 is susceptible to inhibitory tyrosine phosphorylation by Swe1 protein kinase. Swe1 is itself negatively regulated by Hsl1, a Nim1-related protein kinase, and by Hsl7, a presumptive protein-arginine methyltransferase. In vivo all three proteins localize to the bud neck in a septin-dependent manner, consistent with our previous proposal that formation of Hsl1-Hsl7-Swe1 complexes constitutes a checkpoint that monitors septin assembly. We show here that Hsl7 is phosphorylated by Hsl1 in immune-complex kinase assays and can physically associate in vitro with either Hsl1 or Swe1 in the absence of any other yeast proteins. With the use of both the two-hybrid method and in vitro binding assays, we found that Hsl7 contains distinct binding sites for Hsl1 and Swe1. A differential interaction trap approach was used to isolate four single-site substitution mutations in Hsl7, which cluster within a discrete region of its N-terminal domain, that are specifically defective in binding Hsl1. When expressed in hsl7Δ cells, each of these Hsl7 point mutants is unable to localize at the bud neck and cannot mediate down-regulation of Swe1, but retains other functions of Hsl7, including oligomerization and association with Swe1. GFP-fusions of these Hsl1-binding defective Hsl7 proteins localize as a bright perinuclear dot, but never localize to the bud neck; likewise, in hsl1Δ cells, a GFP-fusion to wild-type Hsl7 or native Hsl7 localizes to this dot. Cell synchronization studies showed that, normally, Hsl7 localizes to the dot, but only in cells in the G1 phase of the cell cycle. Immunofluorescence analysis and immunoelectron microscopy established that the dot corresponds to the outer plaque of the spindle pole body (SPB). These data demonstrate that association between Hsl1 and Hsl7 at the bud neck is required to alleviate Swe1-imposed G2-M delay. Hsl7 localization at the SPB during G1 may play some additional role in fine-tuning the coordination between nuclear and cortical events before mitosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclin-dependent kinase (Cdk) inhibitor p21Waf1/Cip1/Sdi1, important for p53-dependent cell cycle control, mediates G1/S arrest through inhibition of Cdks and possibly through inhibition of DNA replication. Cdk inhibition requires a sequence of approximately 60 amino acids within the p21 NH2 terminus. We show, using proteolytic mapping, circular dichroism spectropolarimetry, and nuclear magnetic resonance spectroscopy, that p21 and NH2-terminal fragments that are active as Cdk inhibitors lack stable secondary or tertiary structure in the free solution state. In sharp contrast to the disordered free state, however, the p21 NH2 terminus adopts an ordered stable conformation when bound to Cdk2, as shown directly by NMR spectroscopy. We have, thus, identified a striking disorder-order transition for p21 upon binding to one of its biological targets, Cdk2. This structural transition has profound implications in light of the ability of p21 to bind and inhibit a diverse family of cyclin-Cdk complexes, including cyclin A-Cdk2, cyclin E-Cdk2, and cyclin D-Cdk4. Our findings suggest that the flexibility, or disorder, of free p21 is associated with binding diversity and offer insights into the role for structural disorder in mediating binding specificity in biological systems. Further, these observations challenge the generally accepted view of proteins that stable secondary and tertiary structure are prerequisites for biological activity and suggest that a broader view of protein structure should be considered in the context of structure-activity relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblasts derived from embryos homozygous for a disruption of the retinoblastoma gene (Rb) exhibit a shorter G1 than their wild-type counterparts, apparently due to highly elevated levels of cyclin E protein and deregulated cyclin-dependent kinase 2 (CDK2) activity. Here we demonstrate that the Rb-/- fibroblasts display higher levels of phosphorylated H1 throughout G1 with the maximum being 10-fold higher than that of the Rb+/+ fibroblasts. This profile of intracellular H1 phosphorylation corresponds with deregulated CDK2 activity observed in in vitro assays, suggesting that CDK2 may be directly responsible for the in vivo phosphorylation of H1. H1 phosphorylation has been proposed to lead to a relaxation of chromatin structure due to a decreased affinity of this protein for chromatin after phosphorylation. In accord with this, chromatin from the Rb-/- cells is more susceptible to micrococcal nuclease digestion than that from Rb+/+ fibroblasts. Increased H1 phosphorylation and relaxed chromatin structure have also been observed in cells expressing several oncogenes, suggesting a common mechanism in oncogene and tumor suppressor gene function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription of the genes for the human histone proteins H4, H3, H2A, H2B, and H1 is activated at the G1/S phase transition of the cell cycle. We have previously shown that the promoter complex HiNF-D, which interacts with cell cycle control elements in multiple histone genes, contains the key cell cycle factors cyclin A, CDC2, and a retinoblastoma (pRB) protein-related protein. However, an intrinsic DNA-binding subunit for HiNF-D was not identified. Many genes that are up-regulated at the G1/S phase boundary are controlled by E2F, a transcription factor that associates with cyclin-, cyclin-dependent kinase-, and pRB-related proteins. Using gel-shift immunoassays, DNase I protection, and oligonucleotide competition analyses, we show that the homeodomain protein CDP/cut, not E2F, is the DNA-binding subunit of the HiNF-D complex. The HiNF-D (CDP/cut) complex with the H4 promoter is immunoreactive with antibodies against CDP/cut and pRB but not p107, whereas the CDP/cut complex with a nonhistone promoter (gp91-phox) reacts only with CDP and p107 antibodies. Thus, CDP/cut complexes at different gene promoters can associate with distinct pRB-related proteins. Transient coexpression assays show that CDP/cut modulates H4 promoter activity via the HiNF-D-binding site. Hence, DNA replication-dependent histone H4 genes are regulated by an E2F-independent mechanism involving a complex of CDP/cut with cyclin A/CDC2/ RB-related proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BCL-2-deficient T cells demonstrate accelerated cell cycle progression and increased apoptosis following activation. Increasing the levels of BCL-2 retarded the G0-->S transition, sustained the levels of cyclin-dependent kinase inhibitor p27Kip1, and repressed postactivation death. Proximal signal transduction events and immediate early gene transcription were unaffected. However, the transcription and synthesis of interleukin 2 and other delayed early cytokines were markedly attenuated by BCL-2. In contrast, a cysteine protease inhibitor that also blocks apoptosis had no substantial affect upon cytokine production. InterleUkin 2 expression requires several transcription factors of which nuclear translocation of NFAT (nuclear factor of activated T cells) and NFAT-mediated transactivation were impaired by BCL-2. Thus, select genetic aberrations in the apoptotic pathway reveal a cell autonomous coregulation of activation.