65 resultados para Cowpea aphid-borne mosaic virus
Resumo:
The phylogeny of human T cell lymphotropic virus type II (HTLV-II) was investigated by using strains isolated from Amerindian and Pygmy tribes, in which the virus is maintained primarily through mother-to-child transmission via breast-feeding, and strains from intravenous drug users (IDUs), in which spread is mainly blood-borne via needle sharing. Molecular clock analysis showed that HTLV-II has two different evolutionary rates with the molecular clock for the virus in IDUs ticking 150–350 times faster than the one in endemically infected tribes: 2.7 × 10−4 compared with 1.71/7.31 × 10−7 nucleotide substitutions per site per year in the long terminal repeat region. This dramatic acceleration of the evolutionary rate seems to be related with the mode of transmission. Mathematical models showed the correlation of these two molecular clocks with an endemic spread of HTLV-II in infected tribes compared with the epidemic spread in IDUs. We also noted a sharp increase in the population size of the virus among IDUs during the last decades probably caused by the worldwide increase in intravenous drug use.
Resumo:
A rapid and reproducible method of inhibiting the expression of specific genes in mosquitoes should further our understanding of gene function and may lead to the identification of mosquito genes that determine vector competence or are involved in pathogen transmission. We hypothesized that the virus expression system based on the mosquito-borne Alphavirus, Sindbis (Togaviridae), may efficiently transcribe effector RNAs that inhibit expression of a targeted mosquito gene. To test this hypothesis, germ-line-transformed Aedes aegypti that express luciferase (LUC) from the mosquito Apyrase promoter were intrathoracically inoculated with a double subgenomic Sindbis (dsSIN) virus TE/3′2J/anti-luc (Anti-luc) that transcribes RNA complementary to the 5′ end of the LUC mRNA. LUC activity was monitored in mosquitoes infected with either Anti-luc or control dsSIN viruses expressing unrelated antisense RNAs. Mosquitoes infected with Anti-luc virus exhibited 90% reduction in LUC compared with uninfected and control dsSIN-infected mosquitoes at 5 and 9 days postinoculation. We demonstrate that a gene expressed from the mosquito genome can be inhibited by using an antisense strategy. The dsSIN antisense RNA expression system is an important tool for studying gene function in vivo.
Resumo:
RNA-mediated, posttranscriptional gene silencing has been determined as the molecular mechanism underlying transgenic virus resistance in many plant virus-dicot host plant systems. In this paper we show that transgenic virus resistance in sugarcane (Saccharum spp. hybrid) is based on posttranscriptional gene silencing. The resistance is derived from an untranslatable form of the sorghum mosaic potyvirus strain SCH coat protein (CP) gene. Transgenic sugarcane plants challenged with sorghum mosaic potyvirus strain SCH had phenotypes that ranged from fully susceptible to completely resistant, and a recovery phenotype was also observed. Clones derived from the same transformation event or obtained after vegetative propagation could display different levels of virus resistance, suggesting the involvement of a quantitative component in the resistance response. Most resistant plants displayed low or undetectable steady-state CP transgene mRNA levels, although nuclear transcription rates were high. Increased DNA methylation was observed in the transcribed region of the CP transgenes in most of these plants. Collectively, these characteristics indicate that an RNA-mediated, homology-dependent mechanism is at the base of the virus resistance. This work extends posttranscriptional gene silencing and homology-dependent virus resistance, so far observed only in dicots, to an agronomically important, polyploid monocot.
Resumo:
Cucumber mosaic cucumovirus (CMV) infects a very wide range of plant species (>1000 species). We recently demonstrated that a previously undescribed gene (2b) encoded by RNA 2 of the tripartite RNA genome of CMV is required for systemic virus spread and disease induction in its hosts. Herein we report that when this CMV gene is replaced by its homologue from tomato aspermy cucumovirus (TAV), the resultant hybrid virus is significantly more virulent, induces earlier onset of systemic symptoms, and accumulates to a higher level in seven host species from three families than either of the parents. Our results indicate that CMV and the TAV 2b protein interact synergistically despite the fact that no synergism occurs in double infections with the two parental viruses. To our knowledge, this is the first example of an interspecific hybrid made from plant or animal RNA viruses that is more efficient in systemic infection of a number of hosts than the naturally occurring parents. As CMV and the hybrid virus accumulated to a similar level in the infected tobacco protoplasts, the observed synergistic responses most likely resulted from an increased efficacy of the hybrid virus in systemic spread in host plants provided by the TAV 2b protein. The relevance of our finding to the application of pathogen-derived resistance is discussed.
Resumo:
Infectious human respiratory syncytial virus (RSV) was produced by the intracellular coexpression of five plasmid-borne cDNAs. One cDNA encoded a complete positive-sense version of the RSV genome (corresponding to the replicative intermediate RNA or antigenome), and each of the other four encoded a separate RSV protein, namely, the major nucleocapsid N protein, the nucleocapsid P phosphoprotein, the major polymerase L protein, or the protein from the 5' proximal open reading frame of the M2 mRNA [M2(ORF1)]. RSV was not produced if any of the five plasmids was omitted. The requirement for the M2(ORF1) protein is consistent with its recent identification as a transcription elongation factor and confirms its importance for RSV gene expression. It should thus be possible to introduce defined changes into infectious RSV. This should be useful for basic studies of RSV molecular biology and pathogenesis; in addition, there are immediate applications to the development of live attenuated vaccine strains bearing predetermined defined attenuating mutations.