74 resultados para Conditional Directed Graph
Resumo:
The [4Fe-4S] cluster of Azotobacter vinelandii ferredoxin I receives three of its four ligands from a Cys-Xaa-Xaa-Cys-Xaa-Xaa-Cys sequence at positions 39-45 while the fourth ligand, Cys20, is provided by a distal portion of the sequence. Previously we reported that the site-directed mutation of Cys20 to Ala (C20A protein) resulted in the formation of a new [4Fe-4S] cluster that obtained its fourth ligand from Cys24, a free cysteine in the native structure. That ligand exchange required significant protein rearrangement. Here we report the conversion of Cys20 to Ser (C20S protein), which gives the protein the opportunity either to retain the native structure and use the Ser20 O gamma as a ligand or to rearrange and use Cys24. X-ray crystallography demonstrates that the cluster does not use the Ser20 O gamma as a ligand; rather it rearranges to use Cys24. In the C20S protein the [4Fe-4S] cluster has altered stability and redox properties relative to either C20A or the native protein.
Resumo:
Thyroid gland function is regulated by the hypothalamic-pituitary axis via the secretion of TSH, according to environmental, developmental, and circadian stimuli. TSH modulates both the secretion of thyroid hormone and gland trophism through interaction with a specific guanine nucleotide-binding protein-coupled receptor (TSH receptor; TSH-R), which elicits the activation of the cAMP-dependent signaling pathway. After TSH stimulation, the levels of TSH-R RNA are known to decrease dramatically within a few hours. This phenomenon ultimately leads to homologous long-term desensitization of the TSH-R. Here we show that TSH drives the induction of the inducible cAMP early repressor (ICER) isoform of the cAMP response element (CRE) modulator gene both in rat thyroid gland and in the differentiated thyroid cell line FRTL-5. The kinetics of ICER protein induction mirrors the down-regulation of TSH-R mRNA. ICER binds to a CRE-like sequence in the TSH-R promoter and represses its expression. Thus, ICER induction by TSH in the thyroid gland represents a paradigm of the molecular mechanism by which pituitary hormones elicit homologous long-term desensitization.
Resumo:
We explored the feasibility of designing retroviral vectors that can target human breast cancer cells with characteristic receptors via ligand-receptor interaction. The ecotropic Moloney murine leukemia virus envelope was modified by insertion of sequences encoding human heregulin. Ecotropic virus, which normally does not infect human cells, when pseudotyped with the modified envelope protein now crosses species to infect human breast cancer cell lines that overexpress HER-2 (human epidermal growth factor receptor; also called ERBB2) and HER-4 (also called ERBB4), while human breast cancer cell lines expressing low levels of these receptors remain resistant to infection. Since about 20% of human breast cancers overexpress HER-2 and some of breast cancer cell lines overexpress both HER-2 and HER-4, cell-specific targeting of retroviral vectors may provide a different approach for in vivo gene therapy of this type of breast cancer.
Resumo:
The Src-like tyrosine kinases require membrane localization for transformation and probably for their normal role in signal transduction. We utilized this characteristic to prepare Src-like tyrosine kinases that can be readily activated with the rationally designed chemical inducer of dimerization FK1012. Dimerization of cytoplasmic Src-like tyrosine kinases was not sufficient for signaling, but their recruitment to the plasma membrane led to the rapid activation of transcription factors identical to those regulated by crosslinking the antigen receptor. Moreover, recruitment of activated Src-like kinases to the membrane replaced signaling by the T-lymphocyte antigen receptor complex, leading to the activation of both the Ras/protein kinase C and Ca2+/calcineurin pathways normally activated by antigen receptor signaling. Since these chemical inducers of dimerization are cell permeable, this approach permits the production of conditional alleles of any of the Src-like tyrosine kinases, thereby allowing a delineation of their developmental roles.
Resumo:
While Ras activation has been shown to play an important role in signal transduction by the T-lymphocyte antigen receptor, the mechanism of its activation in T cells is unclear. Membrane localization of the guanine nucleotide exchange factor Sos, but not Vav or Dbl, was sufficient for Ras-mediated signaling in T lymphocytes. Activation of Sos appears to involve membrane recruitment and not allosteric changes, because interaction of Sos with the linking molecule Grb-2 was not required for Ras activation. To extend this analysis, we constructed a modified Sos that could be localized to the membrane inducibly by using a rationally designed chemical inducer of dimerization, FK1012. The role of Grb-2 in signaling was mimicked with this technique, which induced the association of a modified Sos with the membrane, resulting in rapid activation of Ras-induced signaling. In contrast, inducible localization of Grb-2 to the membrane did not activate signaling and suggests that the interaction of Grb-2 with Sos in T cells is subject to regulation. This conditional allele of Sos demonstrates that membrane localization of Sos is sufficient for Ras activation in T cells and indicates that the role of Grb-2 is to realize the biologic advantages of linker-mediated dimerization: enhanced specificity and favorable kinetics for signaling. This method of generating conditional alleles may also be useful in dissecting other signal transduction pathways regulated by protein localization or protein-protein interactions.
Resumo:
Biotinylated lactose permease from Escherichia coli containing a single-cysteine residue at position 330 (helix X) or at position 147, 148, or 149 (helix V) was purified by avidin-affinity chromatography and derivatized with 5-(alpha-bromoacetamido)-1,10-phenanthroline-copper [OP(Cu)]. Studies with purified, OP(Cu)-labeled Leu-330 --> Cys permease in dodecyl-beta-D-maltopyranoside demonstrate that after incubation in the presence of ascorbate, cleavage products of approximately 19 and 6-8 kDa are observed on immunoblots with anti-C-terminal antibody. Remarkably, the same cleavage products are observed with permease embedded in the native membrane. Comparison with the C-terminal half of the permease expressed independently as a standard indicates that the 19-kDa product results from cleavage near the cytoplasmic end of helix VII, whereas the 6- to 8-kDa fragment probably results from fragmentation near the cytoplasmic end of helix XI. Results are entirely consistent with a tertiary-structure model of the C-terminal half of the permease derived from earlier site-directed fluorescence and site-directed mutagenesis studies. Similar studies with OP(Cu)-labeled Cys-148 permease exhibit cleavage products at approximately 19 kDa and at 15-16 kDa. The larger fragment probably reflects cleavage at a site near the cytoplasmic end of helix VII, whereas the 15- to 16-kDa fragment is consistent with cleavage near the cytoplasmic end of helix VIII. When OP(Cu) is moved 100 degrees to position 149 (Val-149 --> Cys permease), a single product is observed at 19 kDa, suggesting fragmentation at the cytoplasmic end of helix VII. However, when the reagent is moved 100 degrees in the other direction to position 147 (Gly-147 --> Cys permease), cleavage is not observed. The results suggest that helix V is in close proximity to helices VII and VIII with position 148 in the interface between the helices, position 149 facing helix VII, and position 147 facing the lipid bilayer.
Resumo:
Transcription factor NF-E2 activity is thought to be crucial for the transcriptional regulation of many erythroid-specific genes. The three small Maf family proteins (MafF, MafG, and MafK) that are closely related to the c-Maf protooncoprotein constitute half of the NF-E2 activity by forming heterodimers with the large tissue-restricted subunit of NF-E2 called p45. We have established and characterized murine erythroleukemia cells that conditionally overexpress MafK from a metallothionein promoter. The conditional expression of MafK caused accumulation of hemoglobin, an indication of terminal differentiation along the erythroid pathway. Concomitantly, DNA binding activities containing MafK were induced within the MafK-overexpressing cells. These results demonstrate that MafK can promote the erythroid differentiation program in erythroleukemia cells and suggest that the small Maf family proteins are key regulatory molecules for erythroid differentiation.
Resumo:
We have developed a strategy to generate mutant genes in mammalian cells in a conditional manner by employing a fusion protein, Cre-ER, consisting of the loxP site-specific Cre recombinase linked to the ligand-binding domain of the human estrogen receptor. We have established homozygous retinoid X receptor alpha-negative (RXR alpha-/-) F9 embryonal carcinoma cells constitutively expressing Cre-ER and have shown that estradiol or the estrogen agonist/antagonist 4-hydroxytamoxifen efficiently induced the recombinase activity, whereas no activity was detected in the absence of ligand or in the presence of the antiestrogen ICI 164,384. Furthermore, using a targeting vector containing a selection marker flanked by loxP sites, we have inactivated one retinoic acid receptor alpha allele in such a line, demonstrating that the presence of the recombinase does not inhibit homologous recombination. Combining this conditional site-specific recombination system with tissue-specific expression of Cre-ER may allow modification of the mammalian genome in vivo in a spatiotemporally regulated manner.
Resumo:
Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.
Resumo:
In this paper, a reverse-transcriptase PCR-based protocol suitable for efficient expression analysis of multigene families is presented. The method combines restriction fragment length polymorphism (RFLP) technology with a gene family-specific version of mRNA differential display and hence is called "RFLP-coupled domain-directed differential display. "With this method, expression of all members of a multigene family at many different developmental stages, in diverse tissues and even in different organisms, can be displayed on one gel. Moreover, bands of interest, representing gene family members, are directly accessible to sequence analysis, without the need for subcloning. The method thus enables a detailed, high-resolution expression analysis of known gene family members as well as the identification and characterization of new ones. Here the technique was used to analyze differential expression of MADS-box genes in male and female inflorescences of maize (Zea mays ssp. mays). Six different MADS-box genes could be identified, being either specifically expressed in the female sex or preferentially expressed in male or female inflorescences, respectively. Other possible applications of the method are discussed.
Resumo:
Chlamydia trachomatis undergoes its entire life cycle within an uncharacterized intracellular vesicle that does not fuse with lysosomes. We used a fluorescent Golgi-specific probe, (N-[7-(4-nitrobenzo-2-oxa-1,3-diazole)]) aminocaproylsphingosine (C6-NBD-Cer), in conjunction with conventional fluorescence or confocal microscopy to identify interactions between the Golgi apparatus and the chlamydial inclusion. We observed not only a close physical association between the Golgi apparatus and the chlamydial inclusion but the eventual presence of a metabolite of this fluorescent probe associated with the chlamydiae themselves. Sphingomyelin, endogenously synthesized from C6-NBD-Cer, was specifically transported to the inclusion and incorporated into the cell wall of the intracellular chlamydiae. Incorporation of the fluorescent sphingolipid by chlamydiae was inhibited by brefeldin A. Chlamydiae therefore occupy a vesicle distal to the Golgi apparatus that receives anterograde vesicular traffic from the Golgi normally bound for the plasma membrane. Collectively, the data suggest that the chlamydial inclusion may represent a unique compartment within the trans-Golgi network.
Resumo:
A large recombinant inbred population of soybean has been characterized for 220 restriction fragment-length polymorphism (RFLP) markers. Values for agronomic traits also have been measured. Quantitative trait loci (QTL) for height, yield, and maturity were located by their linkage to RFLP markers. QTL controlling large amounts of trait variation were analyzed for the dependence of trait variation on particular alleles at a second locus by comparing cumulative distributions of the trait for each genotype (four genotypes per pair of loci). Interesting pairs of loci were analyzed statistically with maximum likelihood and Monte Carlo comparison of additive and epistatic models. For each locus affecting height, variation was conditional upon the presence of a particular allele at a second unlinked locus that itself explained little or no trait variation. The results show that interactions between QTL are frequent and control large effects. Interactions distinguished between different QTL in a single linkage group and between QTL that affect different traits closely linked to one RFLP marker--i.e., distinguished between pleiotropy and closely linked genes. The implications for the evolution of inbreeding plants and for the construction of agronomic breeding strategies are discussed.
Resumo:
The SSN6-TUP1 protein complex represses transcription of diversely regulated genes in the yeast Saccharomyces cerevisiae. Here we present evidence that MIG1, a zinc-finger protein in the EGR1/Zif268 family, recruits SSN6-TUP1 to glucose-repressed promoters. DNA-bound LexA-MIG1 represses transcription of a target gene in glucose-grown cells, and repression requires SSN6 and TUP1. We also show that MIG1 and SSN6 fusion proteins interact in the two-hybrid system. Unexpectedly, we found that LexA-MIG1 activates transcription strongly in an ssn6 mutant and weakly in a tup1 mutant. Finally, LexA-MIG1 does not repress transcription in glucose-deprived cells, and MIG1 is differentially phosphorylated in response to glucose availability. We suggest a role for phosphorylation in regulating repression.
Resumo:
Conditional oncogene expression in transgenic mice is of interest for studying the oncoprotein requirements during tumorigenesis and for deriving cell lines that can be induced to undergo growth arrest and enhance their differentiated functions. We utilized the bacterial tetracycline (Tet)-resistance operon regulatory system (tet) from Tn10 of Escherichia coli to control simian virus 40 (SV40) large tumor (T) antigen (TAg) gene expression and to generate conditionally transformed pancreatic beta cells in transgenic mice. A fusion protein containing the tet repressor (tetR) and the activating domain of the herpes simplex virus protein VP16, which converts the repressor into a transcription activator, was produced in beta cells of transgenic mice under control of the insulin promoter. In a separate lineage of transgenic mice, the TAg gene was introduced under control of a tandem array of tet operator sequences and a minimal promoter, which by itself is not sufficient for gene expression. Mice from the two lineages were then crossed to generate double-transgenic mice. Expression of the tetR fusion protein in beta cells activated TAg transcription, resulting in the development of beta-cell tumors. Tumors arising in the absence of Tet were cultured to derive a stable beta-cell line. Cell incubation in the presence of Tet led to inhibition of proliferation, as shown by decreased BrdUrd and [3H]thymidine incorporation. The Tet derivative anhydrotetracycline showed a 100-fold stronger inhibition compared with Tet. When administered in vivo, Tet efficiently inhibited beta-cell proliferation. These findings indicate that transformed beta cells selected for growth during a tumorigenesis process in vivo maintain a dependence on the continuous presence of the TAg oncoprotein for their proliferation. This system provides an approach for generation of beta-cell lines for cell therapy of diabetes as well as conditionally transformed cell lines from other cell types of interest.