329 resultados para Coding articles
Resumo:
The pregnancy-associated glycoproteins (PAGs) are structurally related to the pepsins, thought to be restricted to the hooved (ungulate) mammals and characterized by being expressed specifically in the outer epithelial cell layer (chorion/trophectoderm) of the placenta. At least some PAGs are catalytically inactive as proteinases, although each appears to possess a cleft capable of binding peptides. By cloning expressed genes from ovine and bovine placental cDNA libraries, by Southern genomic blotting, by screening genomic libraries, and by using PCR to amplify portions of PAG genes from genomic DNA, we estimate that cattle, sheep, and most probably all ruminant Artiodactyla possess many, possibly 100 or more, PAG genes, many of which are placentally expressed. The PAGs are highly diverse in sequence, with regions of hypervariability confined largely to surface-exposed loops. Nonsynonymous (replacement) mutations in the regions of the genes coding for these hypervariable loop segments have accumulated at a higher rate than synonymous (silent) mutations. Construction of distance phylograms, based on comparisons of PAG and related aspartic proteinase amino acid sequences, suggests that much diversification of the PAG genes occurred after the divergence of the Artiodactyla and Perissodactyla, but that at least one gene is represented outside the hooved species. The results also suggest that positive selection of duplicated genes has acted to provide considerable functional diversity among the PAGs, whose presence at the interface between the placenta and endometrium and in the maternal circulation indicates involvement in fetal–maternal interactions.
Resumo:
Plasmodium falciparum, the agent of malignant malaria, is one of mankind’s most severe scourges. Efforts to develop preventive vaccines or remedial drugs are handicapped by the parasite’s rapid evolution of drug resistance and protective antigens. We examine 25 DNA sequences of the gene coding for the highly polymorphic antigenic circumsporozoite protein. We observe total absence of silent nucleotide variation in the two nonrepeated regions of the gene. We propose that this absence reflects a recent origin (within several thousand years) of the world populations of P. falciparum from a single individual; the amino acid polymorphisms observed in these nonrepeat regions would result from strong natural selection. Analysis of these polymorphisms indicates that: (i) the incidence of recombination events does not increase with nucleotide distance; (ii) the strength of linkage disequilibrium between nucleotides is also independent of distance; and (iii) haplotypes in the two nonrepeat regions are correlated with one another, but not with the central repeat region they span. We propose two hypotheses: (i) variation in the highly polymorphic central repeat region arises by mitotic intragenic recombination, and (ii) the population structure of P. falciparum is clonal—a state of affairs that persists in spite of the necessary stage of physiological sexuality that the parasite must sustain in the mosquito vector to complete its life cycle.
Resumo:
The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase; EC 2.7.1.137), strongly enhances myogenic differentiation in cultures of chicken-embryo myoblasts. It increases the size of the myotubes and induces elevated levels of the muscle-specific proteins MyoD, myosin heavy chain, creatine kinase, and desmin. Inhibition of PI 3-kinase activity with LY294002 or with dominant-negative mutants of PI 3-kinase interferes with myogenic differentiation and with the induction of muscle-specific genes. PI 3-kinase is therefore an upstream mediator for the expression of the muscle-specific genes and is both necessary and rate-limiting for the process of myogenesis.
Resumo:
The class I glutathione S-transferases (GSTs) of Anopheles gambiae are encoded by a complex gene family. We describe the genomic organization of three members of this family, which are sequentially arranged on the chromosome in divergent orientations. One of these genes, aggst1-2, is intronless and has been described. In contrast, the two A. gambiae GST genes (aggst1α and aggst1β) reported within are interrupted by introns. The gene aggst1α contains five coding exons that are alternatively spliced to produce four mature GST transcripts, each of which contains a common 5′ exon encoding the N termini of the GST protein spliced to one of four distinct 3′ exons encoding the carboxyl termini. All four of the alternative transcripts of aggst1α are expressed in A. gambiae larvae, pupae, and adults. We report on the involvement of alternative RNA splicing in generating multiple functional GST transcripts. A cDNA from the aggst1β gene was detected in adult mosquitoes, demonstrating that this GST gene is actively transcribed. The percentage similarity of the six cDNAs transcribed from the three GST genes range from 49.5% to 83.1% at the nucleotide level.
Resumo:
The tsetse thrombin inhibitor, a potent and specific low molecular mass (3,530 Da) anticoagulant peptide, was purified previously from salivary gland extracts of Glossina morsitans morsitans (Diptera: Glossinidae). A 303-bp coding sequence corresponding to the inhibitor has now been isolated from a tsetse salivary gland cDNA library by using degenerate oligonucleotide probes. The full-length cDNA contains a 26-bp untranslated segment at its 5′ end, followed by a 63-bp sequence corresponding to a putative secretory signal peptide. A 96-bp segment codes for the mature tsetse thrombin inhibitor, whose predicted molecular weight matches that of the purified native protein. Based on its lack of homology to any previously described family of molecules, the tsetse thrombin inhibitor appears to represent a unique class of naturally occurring protease inhibitors. Recombinant tsetse thrombin inhibitor expressed in Escherichia coli and the chemically synthesized peptide are both substantially less active than the purified native protein, suggesting that posttranslational modification(s) may be necessary for optimal inhibitory activity. The tsetse thrombin inhibitor gene, which is present as a single copy in the tsetse genome, is expressed at high levels in salivary glands and midguts of adult tsetse flies, suggesting a possible role for the anticoagulant in both feeding and processing of the bloodmeal.
Resumo:
A series of chimeral genes, consisting of the yeast GAL10 promoter, yeast ACC1 leader, wheat acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) cDNA, and yeast ACC1 3′-tail, was used to complement a yeast ACC1 mutation. These genes encode a full-length plastid enzyme, with and without the putative chloroplast transit peptide, as well as five chimeric cytosolic/plastid proteins. Four of the genes, all containing at least half of the wheat cytosolic ACCase coding region at the 5′-end, complement the yeast mutation. Aryloxyphenoxypropionate and cyclohexanedione herbicides, at concentrations below 10 μM, inhibit the growth of haploid yeast strains that express two of the chimeric ACCases. This inhibition resembles the inhibition of wheat plastid ACCase observed in vitro and in vivo. The differential response to herbicides localizes the sensitivity determinant to the third quarter of the multidomain plastid ACCase. Sequence comparisons of different multidomain and multisubunit ACCases suggest that this region includes part of the carboxyltransferase domain, and therefore that the carboxyltransferase activity of ACCase (second half-reaction) is the target of the inhibitors. The highly sensitive yeast gene-replacement strains described here provide a convenient system to study herbicide interaction with the enzyme and a powerful screening system for new inhibitors.
Resumo:
β1,4-Galactosyltransferase (β4GalT-I) participates in both glycoconjugate biosynthesis (ubiquitous activity) and lactose biosynthesis (mammary gland-specific activity). In somatic tissues, transcription of the mammalian β4GalT-I gene results in a 4.1-kb mRNA and a 3.9-kb mRNA as a consequence of initiation at two start sites separated by ≈200 bp. In the mammary gland, coincident with the increased β4GalT-I enzyme level (≈50-fold) required for lactose biosynthesis, there is a switch from the 4.1-kb start site to the preferential use of the 3.9-kb start site, which is governed by a stronger tissue-restricted promoter. The use of the 3.9-kb start site results in a β4GalT-I transcript in which the 5′- untranslated region (UTR) has been truncated from ≈175 nt to ≈28 nt. The 5′-UTR of the 4.1-kb transcript [UTR(4.1)] is predicted to contain extensive secondary structure, a feature previously shown to reduce translational efficiency of an mRNA. In contrast, the 5′-UTR of the 3.9-kb mRNA [UTR(3.9)] lacks extensive secondary structure; thus, this transcript is predicted to be more efficiently translated relative to the 4.1-kb mRNA. To test this prediction, constructs were assembled in which the respective 5′-UTRs were fused to the luciferase-coding sequence and enzyme levels were determined after translation in vitro and in vivo. The luciferase mRNA containing the truncated UTR(3.9) was translated more efficiently both in vitro (≈14-fold) and in vivo (3- to 5-fold) relative to the luciferase mRNA containing the UTR(4.1). Consequently, in addition to control at the transcriptional level, β4GalT-I enzyme levels are further augmented in the lactating mammary gland as a result of translational control.
Resumo:
Using computer programs developed for this purpose, we searched for various repeated sequences including inverted, direct tandem, and homopurine–homopyrimidine mirror repeats in various prokaryotes, eukaryotes, and an archaebacterium. Comparison of observed frequencies with expectations revealed that in bacterial genomes and organelles the frequency of different repeats is either random or enriched for inverted and/or direct tandem repeats. By contrast, in all eukaryotic genomes studied, we observed an overrepresentation of all repeats, especially homopurine–homopyrimidine mirror repeats. Analysis of the genomic distribution of all abundant repeats showed that they are virtually excluded from coding sequences. Unexpectedly, the frequencies of abundant repeats normalized for their expectations were almost perfect exponential functions of their size, and for a given repeat this function was indistinguishable between different genomes.
Resumo:
Assessing the reliability of neuronal spike trains is fundamental to an understanding of the neural code. We measured the reproducibility of retinal responses to repeated visual stimuli. In both tiger salamander and rabbit, the retinal ganglion cells responded to random flicker with discrete, brief periods of firing. For any given cell, these firing events covered only a small fraction of the total stimulus time, often less than 5%. Firing events were very reproducible from trial to trial: the timing jitter of individual spikes was as low as 1 msec, and the standard deviation in spike count was often less than 0.5 spikes. Comparing the precision of spike timing to that of the spike count showed that the timing of a firing event conveyed several times more visual information than its spike count. This sparseness and precision were general characteristics of ganglion cell responses, maintained over the broad ensemble of stimulus waveforms produced by random flicker, and over a range of contrasts. Thus, the responses of retinal ganglion cells are not properly described by a firing probability that varies continuously with the stimulus. Instead, these neurons elicit discrete firing events that may be the fundamental coding symbols in retinal spike trains.
Resumo:
Previous studies have identified an ATP-dependent DNA helicase activity intrinsic to the human minichromosome maintenance (MCM) complex, composed of MCM subunits 4, 6, and 7 [Ishimi, Y. (1997) J. Biol. Chem. 272, 24508–24513]. In contrast to the presence of multiple MCM genes (at least six) in eukaryotes, the archaeon Methanobacterium thermoautotrophicum ΔH (mth) genome contains a single open reading frame coding for an MCM protein. In this study we report the isolation of the mthMCM protein overexpressed in Escherichia coli. The purified recombinant protein was found to exist in both multimeric (≈103 kDa) and monomeric (76 kDa) forms. Both forms of the protein bind to single-stranded DNA, hydrolyze ATP in the presence of DNA, and possess 3′-to-5′ ATP-dependent DNA helicase activities. Thus, a single mthMCM protein contains biochemical properties identical to those associated with the eukaryotic MCM4, -6, and -7 complex. These results suggest that the characterization of the mthMCM protein and its multiple forms may contribute to our understanding of the role of MCM helicase activity in eukaryotic chromosomal DNA replication.
Resumo:
Prophenoloxidase, a melanin-synthesizing enzyme, is considered to be an important arthropod immune protein. In mosquitoes, prophenoloxidase has been shown to be involved in refractory mechanisms against malaria parasites. In our study we used Anopheles gambiae, the most important human malaria vector, to characterize the first arthropod prophenoloxidase gene at the genomic level. The complete nucleotide sequence, including the immediate 5′ flanking sequence (−855 bp) of the prophenoloxidase 1 gene, was determined. The gene spans 10 kb and is composed of five exons and four introns coding for a 2.5-kb mRNA. In the 5′ flanking sequence, we found several putative regulatory motifs, two of which were identified as ecdysteroid regulatory elements. Electrophoretic mobility gel-shift assays and supershift assays demonstrated that the Aedes aegypti ecdysone receptor/Ultraspiracle nuclear receptor complex, and, seemingly, the endogenous Anopheles gambiae nuclear receptor complex, was able to bind one of the ecdysteroid response elements. Furthermore, 20-hydroxyecdysone stimulation was shown to up-regulate the transcription of the prophenoloxidase 1 gene in an A. gambiae cell line.
Resumo:
Pre-mRNA splicing is among the last known nuclear events before export of mature mRNA to the cytoplasm. At present, it is not known whether splicing and mRNA export are biochemically coupled processes. In this study, we have injected pre-mRNAs containing a single intron or the same mRNAs lacking an intron (Δi-mRNAs) into Xenopus oocyte nuclei. We find that the spliced mRNAs are exported much more rapidly and efficiently than the identical Δi-mRNAs. Moreover, competition studies using excess Δi-mRNA indicate that different factor(s) are involved in the inefficient export of Δi-mRNA vs. the efficient export of spliced mRNA. Consistent with this conclusion, spliced mRNA and Δi-mRNA, though identical in sequence, are assembled into different messenger ribonucleoprotein particles (mRNP) in vitro. Strikingly, the mRNA in the spliced mRNP, but not in the Δi-mRNP, is exported rapidly and efficiently. We conclude that splicing generates a specific nucleoprotein complex that targets mRNA for export. Our results, revealing a link between splicing and efficient mRNA export, may explain the reports that an intron is required for efficient expression of many protein-coding genes in metazoans.
Resumo:
The saliva of blood-sucking arthropods contains powerful pharmacologically active substances and may be a vaccine target against some vector-borne diseases. Subtractive cloning combined with biochemical approaches was used to discover activities in the salivary glands of the hematophagous fly Lutzomyia longipalpis. Sequences of nine full-length cDNA clones were obtained, five of which are possibly associated with blood-meal acquisition, each having cDNA similarity to: (i) the bed bug Cimex lectularius apyrase, (ii) a 5′-nucleotidase/phosphodiesterase, (iii) a hyaluronidase, (iv) a protein containing a carbohydrate-recognition domain (CRD), and (v) a RGD-containing peptide with no significant matches to known proteins in the blast databases. Following these findings, we observed that the salivary apyrase activity of L. longipalpis is indeed similar to that of Cimex apyrase in its metal requirements. The predicted isoelectric point of the putative apyrase matches the value found for Lutzomyia salivary apyrase. A 5′-nucleotidase, as well as hyaluronidase activity, was found in the salivary glands, and the CRD-containing cDNA matches the N-terminal sequence of the HPLC-purified salivary anticlotting protein. A cDNA similar to α-amylase was discovered and salivary enzymatic activity demonstrated for the first time in a blood-sucking arthropod. Full-length clones were also found coding for three proteins of unknown function matching, respectively, the N-terminal sequence of an abundant salivary protein, having similarity to the CAP superfamily of proteins and the Drosophila yellow protein. Finally, two partial sequences are reported that match possible housekeeping genes. Subtractive cloning will considerably enhance efforts to unravel the salivary pharmacopeia of blood-sucking arthropods.
Resumo:
Polymorphic regions consisting of a variable number of tandem repeats within intron 2 of the gene coding for the serotonin transporter protein 5-HTT have been associated with susceptibility to affective disorders. We have cloned two of these intronic polymorphisms, Stin2.10 and Stin2.12, into an expression vector containing a heterologous minimal promoter and the bacterial LacZ reporter gene. These constructs were then used to produce transgenic mice. In embryonic day 10.5 embryos, both Stin2.10 and Stin2.12 produced consistent β-galactosidase expression in the embryonic midbrain, hindbrain, and spinal cord floor plate. However, we observed that the levels of β-galactosidase expression produced by both the Stin2.10 and Stin2.12 within the rostral hindbrain differed significantly at embryonic day 10.5. Our data suggest that these polymorphic variable number of tandem repeats regions act as transcriptional regulators and have allele-dependent differential enhancer-like properties within an area of the hindbrain where the 5-HTT gene is known to be transcribed at this stage of development.
Resumo:
On the basis of the sequence of the mitochondrial genome in the flowering plant Arabidopsis thaliana, RNA editing events were systematically investigated in the respective RNA population. A total of 456 C to U, but no U to C, conversions were identified exclusively in mRNAs, 441 in ORFs, 8 in introns, and 7 in leader and trailer sequences. No RNA editing was seen in any of the rRNAs or in several tRNAs investigated for potential mismatch corrections. RNA editing affects individual coding regions with frequencies varying between 0 and 18.9% of the codons. The predominance of RNA editing events in the first two codon positions is not related to translational decoding, because it is not correlated with codon usage. As a general effect, RNA editing increases the hydrophobicity of the coded mitochondrial proteins. Concerning the selection of RNA editing sites, little significant nucleotide preference is observed in their vicinity in comparison to unedited C residues. This sequence bias is, per se, not sufficient to specify individual C nucleotides in the total RNA population in Arabidopsis mitochondria.