82 resultados para Central giant cell granuloma
Resumo:
Blocking CD28-B7 T-cell costimulation by systemic administration of CTLA4Ig, a fusion protein which binds B7 molecules on the surface of antigen-presenting cells, prevents rejection and induces tolerance in experimental acute allograft rejection models. We tested the effect of CTLA4Ig therapy on the process of chronic renal allograft rejection using an established experimental transplantation model. F344 kidneys were transplanted orthotopically into bilaterally nephrectomized LEW recipients. Control animals received low dose cyclosporine for 10 days posttransplantation. Administration of a single injection of CTLA4Ig on day 2 posttransplant alone or in addition to the low dose cyclosporine protocol resulted in improvement of long-term graft survival as compared with controls. More importantly, control recipients which received cyclosporine only developed progressive proteinuria by 8-12 weeks, and morphological evidence of chronic rejection by 16-24 weeks, including widespread transplant arteriosclerosis and focal and segmental glomerulosclerosis, while animals treated with CTLA4Ig alone or in addition to cyclosporine did not. Competitive reverse transcriptase-PCR and immunohistological analysis of allografts at 8, 16, and 24 weeks showed attenuation of lymphocyte and macrophage infiltration and activation in the CTLA4Ig-treated animals, as compared with cyclosporine-alone treated controls. These data confirm that early blockade of the CD28-B7 T-cell costimulatory pathway prevents later development and evolution of chronic renal allograft rejection. Our results indicate that T-cell recognition of alloantigen is a central event in initiating the process of chronic rejection, and that strategies targeted at blocking T-cell costimulation may prove to be a valuable clinical approach to preventing development of the process.
Resumo:
We have used a PCR-based technology to study the V beta 5 and V beta 17 repertoire of T-cell populations in HLA-DR2 multiple sclerosis (MS) patients. We have found that the five MS DR2 patients studied present, at the moment of diagnosis and prior to any treatment, a marked expansion of a CD4+ T-cell population bearing V beta 5-J beta 1.4 beta chains. The sequences of the complementarity-determining region 3 of the expanded T cells are highly homologous. One shares structural features with that of the T cells infiltrating the central nervous system and of myelin basic protein-reactive T cells found in HLA-DR2 MS patients. An homologous sequence was not detectable in MS patients expressing DR alleles other than DR2. However, it is detectable but not expanded in healthy DR2 individuals. The possible mechanisms leading to its in vivo proliferation at the onset of MS are discussed.
Resumo:
We report here a rapid evaporation method that produces in high yield giant unilamellar vesicles up to 50 microns in diameter. The vesicles are obtained after only 2 min and can be prepared from different phospholipids, including L-alpha-phosphatidylcholine (lecithin), dipalmitoleoyl L-alpha-phosphatidylcholine, and beta-arachidonoyl gamma-palmitoyl L-alpha-phosphatidylcholine. Vesicles can be produced in distilled water and in Hepes, phosphate, and borate buffers in the pH range of 7.0 to 11.5 with ionic strengths up to 50 mM. The short preparation time allows encapsulation of labile molecular targets or enzymes with high catalytic activities. Cell-sized proteoliposomes have been prepared in which gamma-glutamyltransferase (EC 2.3.2.2) was functionally incorporated into the membrane wall.
Resumo:
The oligodendrocyte is the myelin-forming cell in the central nervous system. Despite the close interaction between axons and oligodendrocytes, there is little evidence that neurons influence myelinogenesis. On the contrary, newly differentiated oligodendrocytes, which mature in culture in the total absence of neurons, synthesize the myelin-specific constituents of oligodendrocytes differentiated in vivo and even form myelin-like figures. Neuronal electrical activity may be required, however, for the appropriate formation of the myelin sheath. To investigate the role of electrical activity on myelin formation, we have used highly specific neurotoxins, which can either block (tetrodotoxin) or increase (alpha-scorpion toxin) the firing of neurons. We show that myelination can be inhibited by blocking the action potential of neighboring axons or enhanced by increasing their electrical activity, clearly linking neuronal electrical activity to myelinogenesis.
Resumo:
Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, is a human herpesvirus associated with epithelial cell malignancies (nasopharyngeal carcinoma) as well as B-cell malignancies. Understanding how viral latency is disrupted is a central issue in herpesvirus biology. Epithelial cells are the major site of lytic EBV replication within the human host, and viral reactivation occurs in EBV-associated nasopharyngeal carcinomas. It is known that expression of a single viral immediate-early protein, BZLF1, is sufficient to initiate the switch from latent to lytic infection in B cells. Cellular regulation of BZLF1 transcription is therefore thought to play a key role in regulating the stringency of viral latency. Here we show that, unexpectedly, expression of another viral immediate-early protein, BRLF1, can disrupt viral latency in an epithelial cell-specific fashion. Therefore, the mechanisms leading to disruption of EBV latency appear to be cell-type specific.
Resumo:
A major question in central nervous system development, including the neuroretina, is whether migrating cells express cues to find their way and settle at specific locations. We have transplanted quail neuroretinal cell lines QNR/D, a putative amacrine or ganglion cell, and QNR/K2, a putative Müller cell into chicken embryo eyes. Implanted QNR/D cells migrate only to the retinal ganglion and amacrine cell layers and project neurites in the plane of retina; in contrast, QNR/K2 cells migrate through the ganglion and amacrine layers, locate in the inner nuclear layer, and project processes across the retina. These data show that QNR/D and QNR/K2 cell lines represent distinct neural cell types, suggesting that migrating neural cells express distinct address cues. Furthermore, our results raise the possibility that immortalized cell lines can be used for replacement of specific cell types and for the transport of genes to given locations in neuroretina.
Resumo:
Synapses of the hippocampal mossy fiber pathway exhibit several characteristic features, including a unique form of long-term potentiation that does not require activation of the N-methyl-D-aspartate receptor by glutamate, a complex postsynaptic architecture, and sprouting in response to seizures. However, these connections have proven difficult to study in hippocampal slices because of their relative paucity (<0.4%) compared to commissural-collateral synapses. To overcome this problem, we have developed a novel dissociated cell culture system in which we have enriched mossy fiber synapses by increasing the ratio of granule-to-pyramidal cells. As in vivo, mossy fiber connections are composed of large dynorphin A-positive varicosities contacting complex spines (but without a restricted localization). The elementary synaptic connections are glutamatergic, inhibited by dynorphin A, and exhibit N-methyl-D-aspartate-independent long-term potentiation. Thus, the simplicity and experimental accessibility of this enriched in vitro mossy fiber pathway provides a new perspective for studying nonassociative plasticity in the mammalian central nervous system.
Resumo:
Whole-cell voltage clamp was used to investigate the properties and spatial distribution of fast-deactivating (FD) Ca channels in squid giant fiber lobe (GFL) neurons. Squid FD Ca channels are reversibly blocked by the spider toxin omega-Agatoxin IVA with an IC50 of 240-420 nM with no effect on the kinetics of Ca channel gating. Channels with very similar properties are expressed in both somatic and axonal domains of cultured GFL neurons, but FD Ca channel conductance density is higher in axonal bulbs than in cell bodies at all times in culture. Channels presumably synthesized during culture are preferentially expressed in the growing bulbs, but bulbar Ca conductance density remains constant while Na conductance density increases, suggesting that processes determining the densities of Ca and Na channels in this extrasomatic domain are largely independent. These observations suggest that growing axonal bulbs in cultured GFL neurons are not composed entirely of "axonal" membranes because FD Ca channels are absent from the giant axon in situ but, rather, suggest a potential role for FD Ca channels in mediating neurotransmitter release at the motor terminals of the giant axon.
Resumo:
Growing evidence indicates that cells of the mononuclear phagocyte lineage, which includes peripheral blood monocytes (PBM) and tissue macrophages, participate in a variety of neurodestructive events and may play a pivotal role in neurodegenerative conditions such as Alzheimer disease. The present study sought to determine whether exposure of PBM to beta-amyloid peptide (A beta), the major protein of the amyloid fibrils that accumulate in the brain in Alzheimer disease, could induce cytopathic activity in these cells upon their subsequent incubation with neural tissue. PBM were incubated with A beta for 3 days, centrifuged and washed to remove traces of cell-free A beta, and then applied to organotypic cultures of rat brain for varying periods of time. By using a cell-viability assay to quantitate neurocytopathic effect, an increase in the ratio of dead to live cells was detected in cultures containing A beta-stimulated PBM versus control PBM (stimulated with either bovine serum albumin or reverse A beta peptide) as early as 3 days after coculture. The ratio of dead to live cells increased further by 10 days of coculture. By 30 days of coculture, the dead to live cell ratio remained elevated, and the intensity of neurocytopathic effect was such that large areas of brain mass dissociated from the cultures. These results indicate that stimulation of PBM with A beta significantly heightens their neurocytopathic activity and highlight the possibility that inflammatory reactions in the brain play a role in the neurodegeneration that accompanies Alzheimer disease.
Resumo:
The central role of cyclin-dependent kinases (CDKs) in cell cycle regulation makes them a promising target for studying inhibitory molecules that can modify the degree of cell proliferation. The discovery of specific inhibitors of CDKs such as polyhydroxylated flavones has opened the way to investigation and design of antimitotic compounds. A novel flavone, (-)-cis-5,7-dihydroxyphenyl-8-[4-(3-hydroxy-1-methyl)piperidinyl] -4H-1-benzopyran-4-one hydrochloride hemihydrate (L868276), is a potent inhibitor of CDKs. A chlorinated form, flavopiridol, is currently in phase I clinical trials as a drug against breast tumors. We determined the crystal structure of a complex between CDK2 and L868276 at 2.33 angstroms resolution and refined to an Rfactor 20.3%. The aromatic portion of the inhibitor binds to the adenine-binding pocket of CDK2, and the position of the phenyl group of the inhibitor enables the inhibitor to make contacts with the enzyme not observed in the ATP complex structure. The analysis of the position of this phenyl ring not only explains the great differences of kinase inhibition among the flavonoid inhibitors but also explains the specificity of L868276 to inhibit CDK2 and CDC2.
Resumo:
During development of the vertebrate nervous system, the neural cell adhesion molecule (N-CAM) is expressed in a defined spatiotemporal pattern. We have proposed that the expression of N-CAM is controlled, in part, by proteins encoded by homeobox genes. This hypothesis has been supported by previous in vitro experiments showing that products of homeobox genes can both bind to and transactivate the N-CAM promoter via two homeodomain binding sites, HBS-I and HBS-II. We have now tested the hypothesis that the N-CAM gene is a target of homeodomain proteins in vivo by using transgenic mice containing native and mutated N-CAM promoter constructs linked to a beta-galactosidase reporter gene. Segments of the 5' flanking region of the mouse N-CAM gene were sufficient to direct expression of the reporter gene in the central nervous system in a pattern consistent with that of the endogenous N-CAM gene. For example, at embryonic day (E) 11, beta-galactosidase staining was found in postmitotic neurons in dorsolateral and ventrolateral regions of the spinal cord; at E14.5, staining was seen in these neurons throughout the spinal cord. In contrast, mice carrying an N-CAM promoter-reporter construct with mutations in both homeodomain binding sites (HBS-I and HBS-II) showed altered expression patterns in the spinal cord. At E11, beta-galactosidase expression was seen in the ventrolateral spinal cord, but was absent in the dorsolateral areas, and at E 14.5, beta-galactosidase expression was no longer detected in any cells of the cord. Homeodomain binding sites found in the N-CAM promoter thus appear to be important in determining specific expression patterns of N-CAM along the dorsoventral axis in the developing spinal cord. These experiments suggest that the N-CAM gene is an in vivo target of homeobox gene products in vertebrates.
Resumo:
In the vertebrate central nervous system, the retina has been a useful model for studies of cell fate determination. Recent results from studies conducted in vitro and in vivo suggest a model of retinal development in which both the progenitor cells and the environment change over time. The model is based upon the notion that the mitotic cells within the retina change in their response properties, or "competence", during development. These changes presage the ordered appearance of distinct cell types during development and appear to be necessary for the production of the distinct cell types. As the response properties of the cells change, so too do the environmental signals that the cells encounter. Together, intrinsic properties and extrinsic cues direct the choice of cell fate.
Resumo:
Cassette mutagenesis was used to identify side chains in human interleukin 5 (hIL-5) that mediate binding to hIL-5 receptor alpha chain (hIL-5R alpha). A series of single alanine substitutions was introduced into a stretch of residues in the C-terminal region, including helix D, which previously had been implicated in receptor alpha chain recognition and which is aligned on the IL-5 surface so as to allow the topography of receptor binding residues to be examined. hIL-5 and single site mutants were expressed in COS cells, their interactions with hIL-5R alpha were measured by a sandwich surface plasmon resonance biosensor method, and their biological activities were measured by an IL-5-dependent cell proliferation assay. A pattern of mutagenesis effects was observed, with greatest impact near the interface between the two four-helix bundles of IL-5, in particular at residues Glu-110 and Trp-111, and least at the distal ends of the D helices. This pattern suggests the possibility that residues near the interface of the two four-helix bundles in hIL-5 comprise a central patch or hot spot, which constitutes an energetically important alpha chain recognition site. This hypothesis suggests a structural explanation for the 1:1 stoichiometry observed for the complex of hIL-5 with hIL-5R alpha.
Resumo:
Cytokines are now recognized to play important roles in the physiology of the central nervous system (CNS) during health and disease. Tumor necrosis factor alpha (TNF-alpha) has been implicated in the pathogenesis of several human CNS disorders including multiple sclerosis, AIDS dementia, and cerebral malaria. We have generated transgenic mice that constitutively express a murine TNF-alpha transgene, under the control of its own promoter, specifically in their CNS and that spontaneously develop a chronic inflammatory demyelinating disease with 100% penetrance from around 3-8 weeks of age. High-level expression of the transgene was seen in neurons distributed throughout the brain. Disease is manifested by ataxia, seizures, and paresis and leads to early death. Histopathological analysis revealed infiltration of the meninges and CNS parenchyma by CD4+ and CD8+ T lymphocytes, widespread reactive astrocytosis and microgliosis, and focal demyelination. The direct action of TNF-alpha in the pathogenesis of this disease was confirmed by peripheral administration of a neutralizing anti-murine TNF-alpha antibody. This treatment completely prevented the development of neurological symptoms, T-cell infiltration into the CNS parenchyma, astrocytosis, and demyelination, and greatly reduced the severity of reactive microgliosis. These results demonstrate that overexpression of TNF-alpha in the CNS can cause abnormalities in nervous system structure and function. The disease induced in TNF-alpha transgenic mice shows clinical and histopathological features characteristic of inflammatory demyelinating CNS disorders in humans, and these mice represent a relevant in vivo model for their further study.