96 resultados para Cell-mediated-immunity
Resumo:
Programmed cell death regulates a number of biological phenomena, and the apoptotic signal must itself be tightly controlled to avoid inappropriate cell death. We established a genetic screen to search for molecules that inhibit the apoptotic signal from the Fas receptor. Here we report the isolation of a gene, LFG, that protects cells uniquely from Fas but not from the mechanistically related tumor necrosis factor α death signal. LFG is widely distributed, but remarkably is highly expressed in the hippocampus. LFG can bind to the Fas receptor, but does not regulate Fas expression or interfere with binding of an agonist antibody. Furthermore LFG does not inhibit binding of FADD to Fas.
Resumo:
The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.
Resumo:
The Ink4a/Arf locus encodes p16Ink4a and p19Arf and is among the most frequently mutated tumor suppressor loci in human cancer. In mice, many of these effects appear to be mediated by interactions between p19Arf and the p53 tumor-suppressor protein. Because Tp53 mutations are a common feature of the multistep pre-B cell transformation process mediated by Abelson murine leukemia virus (Ab-MLV), we examined the possibility that proteins encoded by the Ink4a/Arf locus also play a role in Abelson virus transformation. Analyses of primary transformants revealed that both p16Ink4a and p19Arf are expressed in many of the cells as they emerge from the apoptotic crisis that characterizes the transformation process. Analyses of primary transformants from Ink4a/Arf null mice revealed that these cells bypassed crisis. Because expression of p19Arf but not p16 Ink4a induced apoptosis in Ab-MLV-transformed pre-B cells, p19Arf appears to be responsible for these events. Consistent with the link between p19Arf and p53, Ink4a/Arf expression correlates with or precedes the emergence of cells expressing mutant p53. These data demonstrate that p19Arf is an important part of the cellular defense mounted against transforming signals from the Abl oncoprotein and provide direct evidence that the p19Arf–p53 regulatory loop plays an important role in lymphoma induction.
Resumo:
Chemotaxis is mediated by activation of seven-transmembrane domain, G protein-coupled receptors, but the signal transduction pathways leading to chemotaxis are poorly understood. To identify G proteins that signal the directed migration of cells, we stably transfected a lymphocyte cell line (300-19) with G protein-coupled receptors that couple exclusively to Gαq (the m3 muscarinic receptor), Gαi (the κ-opioid receptor), and Gαs (the β-adrenergic receptor), as well as the human thrombin receptor (PAR-1) and the C-C chemokine receptor 2B. Cells expressing receptors that coupled to Gαi, but not to Gαq or Gαs, migrated in response to a concentration gradient of the appropriate agonist. Overexpression of Gα transducin, which binds to and inactivates free Gβγ dimers, completely blocked chemotaxis although having little or no effect on intracellular calcium mobilization or other measures of cell signaling. The identification of Gβγ dimers as a crucial intermediate in the chemotaxis signaling pathway provides further evidence that chemotaxis of mammalian cells has important similarities to polarized responses in yeast. We conclude that chemotaxis is dependent on activation of Gαi and the release of Gβγ dimers, and that Gαi-coupled receptors not traditionally associated with chemotaxis can mediate directed migration when they are expressed in hematopoietic cells.
Resumo:
The scatter factor/hepatocyte growth factor regulates scattering and morphogenesis of epithelial cells through activation of the MET tyrosine kinase receptor. In particular, the noncatalytic C-terminal tail of MET contains two autophosphorylation tyrosine residues, which form a multisubstrate-binding site for several cytoplasmic effectors and are thought to be essential for signal transduction. We show here that a MET receptor mutated on the four C-terminal tyrosine residues, Y1311F, Y1347F, Y1354F, and Y1363F, can induce efficiently a transcriptional response and cell scattering, whereas it cannot induce cell morphogenesis. Although the mutated receptor had lost its ability to recruit and/or activate known signaling molecules, such as GRB2, SHC, GAB1, and PI3K, by using a sensitive association–kinase assay we found that the mutated receptor can still associate and phosphorylate a ∼250-kDa protein. By further examining signal transduction mediated by the mutated MET receptor, we established that it can transmit efficient RAS signaling and that cell scattering by the mutated MET receptor could be inhibited by a pharmacological inhibitor of the MEK-ERK (MAP kinase kinase–extracellular signal-regulated kinase) pathway. We propose that signal transduction by autophosphorylation of the C-terminal tyrosine residues is not the sole mechanism by which the activated MET receptor can transmit RAS signaling and cell scattering.
Resumo:
The cytokine IL-1 mediates diverse forms of neurodegeneration, but its mechanism of action is unknown. We have demonstrated previously that exogenous and endogenous IL-1 acts specifically in the rat striatum to dramatically enhance ischemic and excitotoxic brain damage and cause extensive cortical injury. Here we tested the hypothesis that this distant effect of IL-1 is mediated through polysynaptic striatal outputs to the cortex via the hypothalamus. We show that IL-1β injected into the rat striatum with the excitotoxin α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (S-AMPA) caused increased expression of IL-1β (mRNA and protein) mainly in the cortex where maximum injury occurs. Marked increases in IL-1β mRNA and protein were also observed in the hypothalamus. S-AMPA, injected alone into the striatum, caused only localized damage, but administration of IL-1β into either the striatum or the lateral hypothalamus immediately after striatal S-AMPA resulted in widespread cell loss throughout the ipsilateral cortex. Finally we showed that the cortical cell death produced by striatal coinjection of S-AMPA and IL-1β was significantly reduced by administration of the IL-1 receptor antagonist into the lateral hypothalamus. These data suggest that IL-1β can act in the hypothalamus to modify cell viability in the cortex. We conclude that IL-1-dependent pathways project from the striatum to the cortex via the hypothalamus and lead to cortical injury, and that these may contribute to a number of human neurological conditions including stroke and head trauma.
Resumo:
Most mammalian cells exhibit transient delays in the G1 and G2 phases of the cell cycle after treatment with radiation or radiomimetic compounds. p53 is required for the arrest in G1, which provides time for DNA repair. Recently, a role of p53 in the G2/M transition has also been suggested. However, it has been reported that the presence of functional p53 does not always correlate with the induction of these checkpoints. To precisely assess the role of p53 in activating cell cycle checkpoints and in cell survival after radiation, we studied the response of two isogenic human fibrosarcoma cell lines differing in their p53 status (wild type or mutant). We found that when irradiated cells undergo a wild-type p53-dependent G1 arrest, they do not subsequently arrest in G2. Moreover, wild-type p53 cells irradiated past the G1 checkpoint arrest in G2 but do not delay in the subsequent G1 phase. Furthermore, in these cell lines, which do not undergo radiation-induced apoptosis, the wild-type p53 cell line exhibited a greater radioresistance in terms of clonogenic survival. These results suggest that the two checkpoints may be interrelated, perhaps through a control system that determines, depending on the extent of the damage, whether the cell needs to arrest cell cycle progression at the subsequent checkpoint for further repair. p53 could be a crucial component of this control system.
Resumo:
β1-integrin engagement on normal (NL) CD34+ cells increases levels of the cyclin-dependent kinase inhibitor (cdki), p27Kip, decreases cdk2 activity, and inhibits G1/S-phase progression. In contrast, β1-integrin engagement on chronic myelogenous leukemia (CML) CD34+ cells does not inhibit G1/S progression. We now show that, in CML, baseline p27Kip levels are significantly higher than in NL CD34+ cells, but adhesion to fibronectin (FN) does not increase p27Kip levels. p27Kip mRNA levels are similar in CML and NL CD34+ cells and remain unchanged after adhesion, suggesting posttranscriptional regulation. Despite the elevated p27Kip levels, cdk2 kinase activity is similar in CML and NL CD34+ cells. In NL CD34+ cells, >90% of p27Kip is located in the nucleus, where it binds to cdk2 after integrin engagement. In CML CD34+ cells, however, >80% of p27Kip is located in the cytoplasm even in FN-adherent cells, and significantly less p27Kip is bound to cdk2. Thus, presence of BCR/ABL induces elevated levels of p27Kip and relocation of p27Kip to the cytoplasm, which contributes to the loss of integrin-mediated proliferation inhibition, characteristic of CML.
Resumo:
Numerous studies have implicated the pRB family of nuclear proteins in the control of cell cycle progression. Although over-expression experiments have revealed that each of these proteins, pRB, p107, and p130, can induce a G1 cell cycle arrest, mouse knockouts demonstrated distinct developmental requirements for these proteins, as well as partial functional redundancy between family members. To study the mechanism by which the closely related pRB family proteins contribute to cell cycle progression, we generated 3T3 fibroblasts derived from embryos that lack one or more of these proteins (pRB−/−, p107−/−, p130−/−, pRB−/−/p107−/−, pRB−/−/p130−/−, and p107−/−/p130−/−). By comparing the growth and cell cycle characteristics of these cells, we have observed clear differences in the manner in which they transit through the G1 and S phases as well as exit from the cell cycle. Deletion of Rb, or more than one of the family members, results in a shortening of G1 and a lengthening of S phase, as well as a reduction in growth factor requirements. In addition, the individual cell lines showed differential regulation of a subset of E2F-dependent gene promoters, as well as differences in cell cycle-dependent kinase activity. Taken together, these observations suggest that the closely related pRB family proteins affect cell cycle progression through distinct biochemical mechanisms and that their coordinated action may contribute to their diverse functions in various physiological settings.
Resumo:
Induction of wild-type p53 in the ECV-304 bladder carcinoma cell line by infection with a p53 recombinant adenovirus (Ad5CMV-p53) resulted in extensive apoptosis and eventual death of nearly all of the cells. As a strategy to determine the molecular events important to p53-mediated apoptosis in these transformed cells, ECV-304 cells were selected for resistance to p53 by repeated infections with Ad5CMV-p53. We compared the expression of 5,730 genes in p53-resistant (DECV) and p53-sensitive ECV-304 cells by reverse transcription–PCR, Northern blotting, and DNA microarray analysis. The expression of 480 genes differed by 2-fold or more between the two p53-infected cell lines. A number of potential targets for p53 were identified that play roles in cell cycle regulation, DNA repair, redox control, cell adhesion, apoptosis, and differentiation. Proline oxidase, a mitochondrial enzyme involved in the proline/pyrroline-5-carboxylate redox cycle, was up-regulated by p53 in ECV but not in DECV cells. Pyrroline-5-carboxylate (P5C), a proline-derived metabolite generated by proline oxidase, inhibited the proliferation and survival of ECV-304 and DECV cells and induced apoptosis in both cell lines. A recombinant proline oxidase protein tagged with a green fluorescent protein at the amino terminus localized to mitochondria and induced apoptosis in p53-null H1299 non-small cell lung carcinoma cells. The results directly implicate proline oxidase and the proline/P5C pathway in p53-induced growth suppression and apoptosis.
Resumo:
CD26 is a leukocyte-activation antigen that is expressed on T lymphocytes and macrophages and possesses dipeptidyl peptidase IV (DPPIV) activity, whose natural substrates have not been identified yet. CXC chemokines, stromal cell-derived factor 1α (SDF-1α) and 1β (SDF-1β), sharing the receptor CXCR-4, are highly efficacious chemoattractants for resting lymphocytes and CD34+ progenitor cells, and they efficiently block the CXCR-4-mediated entry into cells of T cell line tropic strains of HIV type 1 (HIV-1). Here we show that both the chemotactic and antiviral activities of these chemokines are abrogated by DPPIV-mediated specific removal of the N-terminal dipeptide, not only when the chemokines are produced in transformed mouse L cell line to express human CD26 but also when they were exposed to a human T cell line (H9) physiologically expressing CD26. Mutagenesis of SDF-1α confirmed the critical requirement of the N-terminal dipeptide for its chemotactic and antiviral activities. These data suggest that CD26-mediated cleavage of SDF-1α and SDF-1β likely occurs in human bodies and promotes HIV-1 replication and disease progression. They may also explain why memory function of CD4+ cells is preferentially lost in HIV-1 infection. Furthermore, CD26 would modulate various other biological processes in which SDF-1α and SDF-1β are involved.
Resumo:
Cellular immunity is mediated by the interaction of an αβ T cell receptor (TCR) with a peptide presented within the context of a major histocompatibility complex (MHC) molecule. Alloreactive T cells have αβ TCRs that can recognize both self- and foreign peptide–MHC (pMHC) complexes, implying that the TCR has significant complementarity with different pMHC. To characterize the molecular basis for alloreactive TCR recognition of pMHC, we have produced a soluble, recombinant form of an alloreactive αβ T cell receptor in Drosophila melanogaster cells. This recombinant TCR, 2C, is expressed as a correctly paired αβ heterodimer, with the chains covalently connected via a disulfide bond in the C-terminal region. The native conformation of the 2C TCR was probed by surface plasmon resonance (SPR) analysis by using conformation-specific monoclonal antibodies, as well as syngeneic and allogeneic pMHC ligands. The 2C interaction with H-2Kb-dEV8, H-2Kbm3-dEV8, H-2Kb-SIYR, and H-2Ld-p2Ca spans a range of affinities from Kd = 10−4 to 10−6M for the syngeneic (H-2Kb) and allogeneic (H-2Kbm3, H-2Ld) ligands. In general, the syngeneic ligands bind with weaker affinities than the allogeneic ligands, consistent with current threshold models of thymic selection and T cell activation. Crystallization of the 2C TCR required proteolytic trimming of the C-terminal residues of the α and β chains. X-ray quality crystals of complexes of 2C with H-2Kb-dEV8, H-2Kbm3-dEV8 and H-2Kb-SIYR have been grown.
Resumo:
Similarities in the phenotypes of mice deficient for cytotoxic T lymphocyte antigen-4 (CTLA-4) or transforming growth factor-β1 (TGF-β1) and other observations have led to speculation that CTLA-4 mediates its inhibitory effect on T cell activation via costimulation of TGF-β production. Here, we examine the role of TGF-β in CTLA-4-mediated inhibition of T cell activation and of CTLA-4 in the regulation of TGF-β production. Activation of AND TCR transgenic mouse T cells with costimulatory receptor-specific antigen presenting cells results in efficient costimulation of proliferation by CD28 ligation and inhibition by CTLA-4 ligation. Neutralizing antibody to TGF-β does not reverse CTLA-4-mediated inhibition. Also, CTLA-4 ligation equally inhibits proliferation of wild-type, TGF-β1−/−, and Smad3−/− T cells. Further, CTLA-4 engagement does not result in the increased production of either latent or active TGF-β by CD4+ T cells. These results indicate that CTLA-4 ligation does not regulate TGF-β production and that CTLA-4-mediated inhibition can occur independently of TGF-β. Collectively, these data demonstrate that CTLA-4 and TGF-β represent distinct mechanisms for regulation of T cell responses.
Resumo:
Programmed cell death (PCD) in mammals has been implicated in several disease states including cancer, autoimmune disease, and neurodegenerative disease. In Caenorhabditis elegans, PCD is a normal component of development. We find that Salmonella typhimurium colonization of the C. elegans intestine leads to an increased level of cell death in the worm gonad. S. typhimurium-mediated germ-line cell death is not observed in C. elegans ced-3 and ced-4 mutants in which developmentally regulated cell death is blocked, and ced-3 and ced-4 mutants are hypersensitive to S. typhimurium-mediated killing. These results suggest that PCD may be involved in the C. elegans defense response to pathogen attack.
Resumo:
We show that anti-IgM-induced cell death in a human B lymphoma cell line, B104, is associated with early intracellular acidification and cell shrinkage. In contrast, another human B cell lymphoma line, Daudi, less susceptible to B cell antigen receptor-mediated cell death, responded to anti-IgM with an early increase in intracellular pH (pHi). The anti-IgM-induced changes of pHi were associated with different levels of activation of the Na+/H+ exchanger isoform 1 (NHE1) as judged by its phosphorylation status. Prevention of anti-IgM-induced cell death in B104 cells by the calcineurin phosphatase inhibitor, cyclosporin A, abrogated both intracellular acidification and cell shrinkage and was associated with an increase in the phosphorylation level of NHE1 within the first 60 min of stimulation. This indicates a key role for calcineurin in regulating pHi and cell viability. The potential role of pHi in cell viability was confirmed in Daudi cells treated with an Na+/H+ exchanger inhibitor 5-(N,N-hexamethylene)amiloride. These observations indicate that the outcome of the anti-IgM treatment depends on NHE1-controlled pHi. We suggest that inactivation of the NHE1 in anti-IgM-stimulated cells results in intracellular acidification and subsequently triggers or amplifies cell death.