67 resultados para Cell Membrane
Resumo:
Development of natural killer (NK) cells is thought to depend on interactions between NK progenitors and the bone marrow (BM) microenvironment; however, little is known about the molecular signals involved. Here we show that lymphotoxin (LT) provides an important signal for the development of both NK cells and NK/T cells. LTα−/− mice show marked reduction in splenic and BM NK and NK/T cell numbers and dramatically impaired NK and NK/T cell function. Mice deficient in either tumor necrosis factor receptor (TNFR)-I or TNFR-II have normal numbers of NK and NK/T cells, implying that neither of the TNFRs nor soluble LTα3 is required for development of these cell types. Reciprocal BM transfers between LTα−/− and wild-type mice suggest that close interactions between membrane LT-expressing NK cell precursors and LT-responsive radioresistant stromal cells are necessary for NK cell development. When LT-deficient BM cells are incubated with IL-15, NK cells are formed. In addition, LT-deficient BM cells produce IL-15 after activation. Thus, membrane LT appears to deliver a signal for NK cell development that is either independent of IL-15 or upstream in the IL-15 pathway. These results reveal a novel function for membrane LT in NK and NK/T cell development. They also support a cellular and molecular mechanism by which NK cell precursors themselves deliver essential signals, through the membrane ligand, that induce the microenvironment to promote further NK cell and NK/T cell development.
Resumo:
We show that anti-IgM-induced cell death in a human B lymphoma cell line, B104, is associated with early intracellular acidification and cell shrinkage. In contrast, another human B cell lymphoma line, Daudi, less susceptible to B cell antigen receptor-mediated cell death, responded to anti-IgM with an early increase in intracellular pH (pHi). The anti-IgM-induced changes of pHi were associated with different levels of activation of the Na+/H+ exchanger isoform 1 (NHE1) as judged by its phosphorylation status. Prevention of anti-IgM-induced cell death in B104 cells by the calcineurin phosphatase inhibitor, cyclosporin A, abrogated both intracellular acidification and cell shrinkage and was associated with an increase in the phosphorylation level of NHE1 within the first 60 min of stimulation. This indicates a key role for calcineurin in regulating pHi and cell viability. The potential role of pHi in cell viability was confirmed in Daudi cells treated with an Na+/H+ exchanger inhibitor 5-(N,N-hexamethylene)amiloride. These observations indicate that the outcome of the anti-IgM treatment depends on NHE1-controlled pHi. We suggest that inactivation of the NHE1 in anti-IgM-stimulated cells results in intracellular acidification and subsequently triggers or amplifies cell death.
Resumo:
Integrin-mediated adhesion is a critical regulator of cell migration. Here we demonstrate that integrin-mediated adhesion to high fibronectin concentrations induces a stop signal for cell migration by inhibiting cell polarization and protrusion. On fibronectin, the stop signal is generated through α5β1 integrin-mediated signaling to the Rho family of GTPases. Specifically, Cdc42 and Rac1 activation exhibits a biphasic dependence on fibronectin concentration that parallels optimum cell polarization and protrusion. In contrast, RhoA activity increases with increasing substratum concentration. We find that cross talk between Cdc42 and Rac1 is required for substratum-stimulated protrusion, whereas RhoA activity is inhibitory. We also show that Cdc42 activity is inhibited by Rac1 activation, suggesting that Rac1 activity may down-regulate Cdc42 activity and promote the formation of stabilized rather than transient protrusion. Furthermore, expression of RhoA down-regulates Cdc42 and Rac1 activity, providing a mechanism whereby RhoA may inhibit cell polarization and protrusion. These findings implicate adhesion-dependent signaling as a mechanism to stop cell migration by regulating cell polarity and protrusion via the Rho family of GTPases.
Resumo:
The basement membrane (BM) extracellular matrix induces differentiation and suppresses apoptosis in mammary epithelial cells, whereas cells lacking BM lose their differentiated phenotype and undergo apoptosis. Addition of purified BM components, which are known to induce beta-casein expression, did not prevent apoptosis, indicating that a more complex BM was necessary. A comparison of culture conditions where apoptosis would or would not occur allowed us to relate inhibition of apoptosis to a complete withdrawal from the cell cycle, which was observed only when cells acquired a three-dimensional alveolar structure in response to BM. In the absence of this morphology, both the GI cyclin kinase inhibitor p21/WAF-1 and positive proliferative signals including c-myc and cyclin DI were expressed and the retinoblastoma protein (Rb) continued to be hyperphosphorylated. When we overexpressed either c-myc in quiescent cells or p21 when cells were still cycling, apoptosis was induced. In the absence of three-dimensional alveolar structures, mammary epithelial cells secrete a number of factors including transforming growth factor alpha and tenascin, which when added exogenously to quiescent cells induced expression of c-myc and interleukin-beta1-converting enzyme (ICE) mRNA and led to apoptosis. These experiments demonstrate that a correct tissue architecture is crucial for long-range homeostasis, suppression of apoptosis, and maintenance of differentiated phenotype.
Resumo:
Cytotoxic lymphocytes are characterized by their inclusion of cytoplasmic granules that fuse with the plasma membrane following target cell recognition. We previously identified a cytotoxic granule membrane protein designated p15-TIA-1 that is immunochemically related to an RNA-recognition motif (RRM)-type RNA-binding protein designated p40-TIA-1. Although it was suggested that p15-TIA-1 might be derived from p40-T1A-1 by proteolysis, N-terminal amino acid sequencing of p15-TIA-1 immunoaffinity purified from a natural killer (NK) cell line by using monoclonal antibody (mAb) 2G9 revealed that p15-T1A-1 is identical to the deduced amino acid sequence of NKG7 and GIG-1, cDNAs isolated from NK cells and granulocyte-colony-stimulating factor-treated mononuclear cells, respectively. Epitope mapping revealed that mAb 2G9 recognizes the C terminus of p15-T1A-1 and p40-T1A-1. The deduced amino acid sequence of p15-T1A-1/NKG7/GIG-1 predicts that the protein possesses four transmembrane domains, and immuno-electron microscopy localizes the endogenous protein to the membranes of cytotoxic granules in NK cells. Given its subcellular localization, we propose to rename-this protein GMP-17, for granule membrane protein of 17 kDa. Immunofluorescence microscopy of freshly isolated NK cells confirms this granular localization. Target cell-induced NK cell degranulation results in translocation of GMP-17 from granules to the plasma membrane, suggesting a possible role for GMP-17 in regulating the effector function of lymphocytes and neutrophils.
Resumo:
Hemopoietic stem cells are a distinct population of cells that can differentiate into multilineages of hemopoietic cells and have long-term repopulation capability. A few membrane-bound molecules have been found to be preferentially, but not uniquely, present on the surface of these primitive cells. We report here the identification of a unique 105-kDa glycoprotein on the surface of hemopoietic stem cell line BL3. This molecule, recognized by the absorbed antiserum, is not present on the surface of myeloid progenitors 32D and FDC-P1 cells, EL4 T cells, and NIH 3T3 fibroblasts. This antiserum can also be used to block the proliferation of BL3 cells even in the presence of mitogen-stimulated spleen cell conditioned medium, which is known to have a stimulating activity on BL3 cells. It can also inhibit development of in vitro, fetal liver cell-derived multilineage colonies, but not other types of colonies, and of in vivo bone marrow cell-derived colony-forming unit spleen foci. These data suggest that gp105 plays an important role in hemopoietic stem cell differentiation.