113 resultados para CA2 ATPASES
Resumo:
To visualize Ca2+-dependent proteinprotein interactions in living cells by fluorescence readouts, we used a circularly permuted green fluorescent protein (cpGFP), in which the amino and carboxyl portions had been interchanged and reconnected by a short spacer between the original termini. The cpGFP was fused to calmodulin and its target peptide, M13. The chimeric protein, which we have named pericam, was fluorescent and its spectral properties changed reversibly with the amount of Ca2+, probably because of the interaction between calmodulin and M13 leading to an alteration of the environment surrounding the chromophore. Three types of pericam were obtained by mutating several amino acids adjacent to the chromophore. Of these, flash-pericam became brighter with Ca2+, whereas inverse-pericam dimmed. On the other hand, ratiometric-pericam had an excitation wavelength changing in a Ca2+-dependent manner. All of the pericams expressed in HeLa cells were able to monitor free Ca2+ dynamics, such as Ca2+ oscillations in the cytosol and the nucleus. Ca2+ imaging using high-speed confocal line-scanning microscopy and a flash-pericam allowed to detect the free propagation of Ca2+ ions across the nuclear envelope. Then, free Ca2+ concentrations in the nucleus and mitochondria were simultaneously measured by using ratiometric-pericams having appropriate localization signals, revealing that extra-mitochondrial Ca2+ transients caused rapid changes in the concentration of mitochondrial Ca2+. Finally, a split-pericam was made by deleting the linker in the flash-pericam. The Ca2+-dependent interaction between calmodulin and M13 in HeLa cells was monitored by the association of the two halves of GFP, neither of which was fluorescent by itself.
Resumo:
A finely tuned Ca2+ signaling system is essential for cells to transduce extracellular stimuli, to regulate growth, and to differentiate. We have recently cloned CaT-like (CaT-L), a highly selective Ca2+ channel closely related to the epithelial calcium channels (ECaC) and the calcium transport protein CaT1. CaT-L is expressed in selected exocrine tissues, and its expression also strikingly correlates with the malignancy of prostate cancer. The expression pattern and selective Ca2+ permeation properties suggest an important function in Ca2+ uptake and a role in tumor progression, but not much is known about the regulation of this subfamily of ion channels. We now demonstrate a biochemical and functional mechanism by which cells can control CaT-L activity. CaT-L is regulated by means of a unique calmodulin binding site, which, at the same time, is a target for protein kinase C-dependent phosphorylation. We show that Ca2+-dependent calmodulin binding to CaT-L, which facilitates channel inactivation, can be counteracted by protein kinase C-mediated phosphorylation of the calmodulin binding site.
Resumo:
N-type and P/Q-type Ca2+ channels are inhibited by neurotransmitters acting through G protein-coupled receptors in a membrane-delimited pathway involving G subunits. Inhibition is caused by a shift from an easily activated willing (W) state to a more-difficult-to-activate reluctant (R) state. This inhibition can be reversed by strong depolarization, resulting in prepulse facilitation, or by protein kinase C (PKC) phosphorylation. Comparison of regulation of N-type Ca2+ channels containing Cav2.2a 1 subunits and P/Q-type Ca2+ channels containing Cav2.1 1 subunits revealed substantial differences. In the absence of G protein modulation, Cav2.1 channels containing Cav subunits were tonically in the W state, whereas Cav2.1 channels without subunits and Cav2.2a channels with subunits were tonically in the R state. Both Cav2.1 and Cav2.2a channels could be shifted back toward the W state by strong depolarization or PKC phosphorylation. Our results show that the R state and its modulation by prepulse facilitation, PKC phosphorylation, and Cav subunits are intrinsic properties of the Ca2+ channel itself in the absence of G protein modulation. A common allosteric model of G protein modulation of Ca2+-channel activity incorporating an intrinsic equilibrium between the W and R states of the 1 subunits and modulation of that equilibrium by G proteins, Cav subunits, membrane depolarization, and phosphorylation by PKC accommodates our findings. Such regulation will modulate transmission at synapses that use N-type and P/Q-type Ca2+ channels to initiate neurotransmitter release.
Resumo:
N-type Ca2+ channels can be inhibited by neurotransmitter-induced release of G protein subunits. Two isoforms of Cav2.2 1 subunits of N-type calcium channels from rat brain (Cav2.2a and Cav2.2b; initially termed rbB-I and rbB-II) have different functional properties. Unmodulated Cav2.2b channels are in an easily activated willing (W) state with fast activation kinetics and no prepulse facilitation. Activating G proteins shifts Cav2.2b channels to a difficult to activate reluctant (R) state with slow activation kinetics; they can be returned to the W state by strong depolarization resulting in prepulse facilitation. This contrasts with Cav2.2a channels, which are tonically in the R state and exhibit strong prepulse facilitation. Activating or inhibiting G proteins has no effect. Thus, the R state of Cav2.2a and its reversal by prepulse facilitation are intrinsic to the channel and independent of G protein modulation. Mutating G177 in segment IS3 of Cav2.2b to E as in Cav2.2a converts Cav2.2b tonically to the R state, insensitive to further G protein modulation. The converse substitution in Cav2.2a, E177G, converts it to the W state and restores G protein modulation. We propose that negatively charged E177 in IS3 interacts with a positive charge in the IS4 voltage sensor when the channel is closed and produces the R state of Cav2.2a by a voltage sensor-trapping mechanism. G protein subunits may produce reluctant channels by a similar molecular mechanism.
Resumo:
Mutational and biophysical analysis suggests that an intracellular COOH-terminal domain of the large conductance Ca2+-activated K+ channel (BK channel) contains Ca2+-binding site(s) that are allosterically coupled to channel opening. However the structural basis of Ca2+ binding to BK channels is unknown. To pursue this question, we overexpressed the COOH-terminal 280 residues of the Drosophila slowpoke BK channel (Dslo-C280) as a FLAG- and His6-tagged protein in Escherichia coli. We purified Dslo-C280 in soluble form and used a 45Ca2+-overlay protein blot assay to detect Ca2+ binding. Dslo-C280 exhibits specific binding of 45Ca2+ in comparison with various control proteins and known EF-hand Ca2+-binding proteins. A mutation (D5N5) of Dslo-C280, in which five consecutive Asp residues of the Ca-bowl motif are changed to Asn, reduces 45Ca2+-binding activity by 56%. By electrophysiological assay, the corresponding D5N5 mutant of the Drosophila BK channel expressed in HEK293 cells exhibits lower Ca2+ sensitivity for activation and a shift of +80 mV in the midpoint voltage for activation. This effect is associated with a decrease in the Hill coefficient (N) for activation by Ca2+ and a reduction in apparent Ca2+ affinity, suggesting the loss of one Ca2+-binding site per monomer. These results demonstrate a functional correlation between Ca2+ binding to a specific region of the BK protein and Ca2+-dependent activation, thus providing a biochemical approach to study this process.
Resumo:
To assess the availability of Ca2+ in the lumen of the thylakoid membrane that is required to support the assembly of the oxygen-evolving complex of photosystem II, we have investigated the mechanism of 45Ca2+ transport into the lumen of pea (Pisum sativum) thylakoid membranes using silicone-oil centrifugation. Trans-thylakoid Ca2+ transport is dependent on light or, in the dark, on exogenously added ATP. Both light and ATP hydrolysis are coupled to Ca2+ transport through the formation of a transthylakoid pH gradient. The H+-transporting ionophores nigericin/K+ and carbonyl cyanide 3-chlorophenylhydrazone inhibit the transport of Ca2+. Thylakoid membranes are capable of accumulating up to 30 nmol Ca2+ mg1 chlorophyll from external concentrations of 15 m over the course of a 15-min reaction. These results are consistent with the presence of an active Ca2+/H+ antiport in the thylakoid membrane. Ca2+ transport across the thylakoid membrane has significant implications for chloroplast and plant Ca2+ homeostasis. We propose a model of chloroplast Ca2+ regulation whereby the activity of the Ca2+/H+ antiporter facilitates the light-dependent uptake of Ca2+ by chloroplasts and reduces stromal Ca2+ levels.
Resumo:
Phosphoenolpyruvate carboxylase (PEPC) activity was detected in aleurone-endosperm extracts of barley (Hordeum vulgare) seeds during germination, and specific anti-sorghum (Sorghum bicolor) C4 PEPC polyclonal antibodies immunodecorated constitutive 103-kD and inducible 108-kD PEPC polypeptides in western analysis. The 103- and 108-kD polypeptides were radiolabeled in situ after imbibition for up to 1.5 d in 32P-labeled inorganic phosphate. In vitro phosphorylation by a Ca2+-independent PEPC protein kinase (PK) in crude extracts enhanced the enzyme's velocity and decreased its sensitivity to l-malate at suboptimal pH and [PEP]. Isolated aleurone cell protoplasts contained both phosphorylated PEPC and a Ca2+-independent PEPC-PK that was partially purified by affinity chromatography on blue dextran-agarose. This PK activity was present in dry seeds, and PEPC phosphorylation in situ during imbibition was not affected by the cytosolic protein-synthesis inhibitor cycloheximide, by weak acids, or by various pharmacological reagents that had proven to be effective blockers of the light signal transduction chain and PEPC phosphorylation in C4 mesophyll protoplasts. These collective data support the hypothesis that this Ca2+-independent PEPC-PK was formed during maturation of barley seeds and that its presumed underlying signaling elements were no longer operative during germination.
Resumo:
The proton-pumping ATPase (H+-ATPase) of the plant plasma membrane is encoded by two major gene subfamilies. To characterize individual H+-ATPases, PMA2, an H+-ATPase isoform of tobacco (Nicotiana plumbaginifolia), was expressed in Saccharomyces cerevisiae and found to functionally replace the yeast H+-ATPase if the external pH was kept above 5.0 (A. de Kerchove d'Exaerde, P. Supply, J.P. Dufour, P. Bogaerts, D. Thins, A. Goffeau, M. Boutry [1995] J Biol Chem 270: 2382823837). In the present study we replaced the yeast H+-ATPase with PMA4, an H+-ATPase isoform from the second subfamily. Yeast expressing PMA4 grew at a pH as low as 4.0. This was correlated with a higher acidification of the external medium and an approximately 50% increase of ATPase activity compared with PMA2. Although both PMA2 and PMA4 had a similar pH optimum (6.66.8), the profile was different on the alkaline side. At pH 7.2 PMA2 kept more than 80% of the maximal activity, whereas that of PMA4 decreased to less than 40%. Both enzymes were stimulated up to 3-fold by 100 g/mL lysophosphatidylcholine, but this stimulation vanished at a higher concentration in PMA4. These data demonstrate functional differences between two plant H+-ATPases expressed in the same heterologous host. Characterization of two PMA4 mutants selected to allow yeast growth at pH 3.0 revealed that mutations within the carboxy-terminal region of PMA4 could still improve the enzyme, resulting in better growth of yeast cells.
Resumo:
The extent of in vitro formation of the borate-dimeric-rhamnogalacturonan II (RG-II) complex was stimulated by Ca2+. The complex formed in the presence of Ca2+ was more stable than that without Ca2+. A naturally occurring boron (B)-RG-II complex isolated from radish (Raphanus sativus L. cv Aokubi-daikon) root contained equimolar amounts of Ca2+ and B. Removal of the Ca2+ by trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acid induced cleavage of the complex into monomeric RG-II. These data suggest that Ca2+ is a normal component of the B-RG-II complex. Washing the crude cell walls of radish roots with a 1.5% (w/v) sodium dodecyl sulfate solution, pH 6.5, released 98% of the tissue Ca2+ but only 13% of the B and 22% of the pectic polysaccharides. The remaining Ca2+ was associated with RG-II. Extraction of the sodium dodecyl sulfate-washed cell walls with 50 mm trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acid, pH 6.5, removed the remaining Ca2+, 78% of B, and 49% of pectic polysaccharides. These results suggest that not only Ca2+ but also borate and Ca2+ cross-linking in the RG-II region retain so-called chelator-soluble pectic polysaccharides in cell walls.
Resumo:
Myosin isolated from the pollen tubes of lily (Lilium longiflorum) is composed of a 170-kD heavy chain (E. Yokota and T. Shimmen [1994] Protoplasma 177: 153162). Both the motile activity in vitro and the F-actin-stimulated ATPase activity of this myosin were inhibited by Ca2+ at concentrations higher than 106 m. In the Ca2+ range between 106 and 105 m, inhibition of the motile activity was reversible. In contrast, inhibition by more than 105 m Ca2+ was not reversible upon Ca2+ removal. An 18-kD polypeptide that showed the same mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that of spinach calmodulin (CaM) was present in this myosin fraction. This polypeptide showed a mobility shift in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a Ca2+-dependent manner. Furthermore, this polypeptide was recognized by antiserum against spinach CaM. By immunoprecipitation using antiserum against the 170-kD heavy chain, the 18-kD polypeptide was coprecipitated with the 170-kD heavy chain, provided that the Ca2+ concentration was low, indicating that this 18-kD polypeptide is bound to the 170-kD myosin heavy chain. However, the 18-kD polypeptide was dissociated from the 170-kD heavy chain at high Ca2+ concentrations, which irreversibly inhibited the motile activity of this myosin. From these results, it is suggested that the 18-kD polypeptide, which is likely to be CaM, is associated with the 170-kD heavy chain as a light chain. It is also suggested that this polypeptide is involved in the regulation of this myosin by Ca2+. This is the first biochemical basis, to our knowledge, for Ca2+ regulation of cytoplasmic streaming in higher plants.
Resumo:
The cystic fibrosis transmembrane conductance regulator (CFTR) protein has the ability to function as both a chloride channel and a channel regulator. The loss of these functions explains many of the manifestations of the cystic fibrosis disease (CF), including lung and pancreatic failure, meconium ileus, and male infertility. CFTR has previously been implicated in the cell regulatory volume decrease (RVD) response after hypotonic shocks in murine small intestine crypts, an effect associated to the dysfunction of an unknown swelling-activated potassium conductance. In the present study, we investigated the RVD response in human tracheal CF epithelium and the nature of the volume-sensitive potassium channel affected. Neither the human tracheal cell line CFT1, expressing the mutant CFTR-F508 gene, nor the isogenic vector control line CFT1-LC3, engineered to express the gal gene, showed RVD. On the other hand, the cell line CFT1-LCFSN, engineered to express the wild-type CFTR gene, presented a full RVD. Patch-clamp studies of swelling-activated potassium currents in the three cell lines revealed that all of them possess a potassium current with the biophysical and pharmacological fingerprints of the intermediate conductance Ca2+-dependent potassium channel (IK, also known as KCNN4). However, only CFT1-LCFSN cells showed an increase in IK currents in response to hypotonic challenges. Although the identification of the molecular mechanism relating CFTR to the hIK channel remains to be solved, these data offer new evidence on the complex integration of CFTR in the cells where it is expressed.
Resumo:
To investigate the molecular basis of the voltage sensor that triggers excitationcontraction (EC) coupling, the four-domain pore subunit of the dihydropyridine receptor (DHPR) was cut in the cytoplasmic linker between domains II and III. cDNAs for the I-II domain (1S 1670) and the III-IV domain (1S 701-1873) were expressed in dysgenic 1S-null myotubes. Coexpression of the two fragments resulted in complete recovery of DHPR intramembrane charge movement and voltage-evoked Ca2+ transients. When fragments were expressed separately, EC coupling was not recovered. However, charge movement was detected in the I-II domain expressed alone. Compared with I-II and III-IV together, the charge movement in the I-II domain accounted for about half of the total charge (Qmax = 3 0.23 vs. 5.4 0.76 fC/pF, respectively), and the half-activation potential for charge movement was significantly more negative (V1/2 = 0.2 3.5 vs. 22 3.4 mV, respectively). Thus, interactions between the four internal domains of the pore subunit in the assembled DHPR profoundly affect the voltage dependence of intramembrane charge movement. We also tested a two-domain I-II construct of the neuronal 1A Ca2+ channel. The neuronal I-II domain recovered charge movements like those of the skeletal I-II domain but could not assist the skeletal III-IV domain in the recovery of EC coupling. The results demonstrate that a functional voltage sensor capable of triggering EC coupling in skeletal myotubes can be recovered by the expression of complementary fragments of the DHPR pore subunit. Furthermore, the intrinsic voltage-sensing properties of the 1A I-II domain suggest that this hemi-Ca2+ channel could be relevant to neuronal function.
Resumo:
In leaves of Egeria densa Planchon, N-ethylmaleimide (NEM) and other sulfhydryl-binding reagents induce a temporary increase in nonmitochondrial respiration (QO2) that is inhibited by diphenylene iodonium and quinacrine, two known inhibitors of the plasma membrane NADPH oxidase, and are associated with a relevant increase in electrolyte leakage (M. Bellando, S. Sacco, F. Albergoni, P. Rocco, M.T. Marr [1997] Bot Acta 110: 388394). In this paper we report data indicating further analogies between the oxidative burst induced by sulfhydryl blockers in E. densa and that induced by pathogen-derived elicitors in animal and plant cells: (a) NEM- and Ag+-induced QO2 was associated with H2O2 production and both effects depended on the presence of external Ca2+; (b) Ca2+ influx was markedly increased by treatment with NEM; (c) the Ca2+ channel blocker LaCl3 inhibited QO2, electrolyte release, and membrane depolarization induced by the sulfhydryl reagents; and (d) LaCl3 also inhibited electrolyte leakage induced by the direct infiltration of the leaves with H2O2. These results suggest a model in which the interaction of sulfhydryl blockers with sulfhydryl groups of cell components would primarily induce an increase in the Ca2+ cytosolic concentration, followed by membrane depolarization and activation of a plasma membrane NADPH oxidase. This latter effect, producing active oxygen species, might further influence plasma membrane permeability, leading to the massive release of electrolytes from the tissue.