82 resultados para Airpfield Transporter
Resumo:
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-regulated, cAMP-activated chloride channel located in the apical membrane of many epithelial secretory cells. Here we report cloning of a cAMP-activated epithelial basolateral chloride conductance regulator (EBCR) that appears to be a basolateral CFTR counterpart. This novel chloride channel or regulator shows 49% identity with multidrug resistance-associated protein (MRP) and 29% identity with CFTR. On expression in Xenopus oocytes, EBCR confers a cAMP-activated chloride conductance that is inhibited by the chloride channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamine)benzoic acid, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Northern blot analysis reveals high expression in small intestine, kidney, and liver. In kidney, immunohistochemistry shows a conspicuous basolateral localization mainly in the thick ascending limb of Henle's loop, distal convoluted tubules and to a lesser extent connecting tubules. These data suggest that in the kidney EBCR is involved in hormone-regulated chloride reabsorption.
Resumo:
The renal urea transporter (RUT) is responsible for urea accumulation in the renal medulla, and consequently plays a central role in the urinary concentrating mechanism. To study its cellular and subcellular localization, we prepared affinity-purified, peptide-derived polyclonal antibodies against rat RUT based on the cloned cDNA sequence. Immunoblots using membrane fractions from rat renal inner medulla revealed a solitary 97-kDa band. Immunocytochemistry demonstrated RUT labeling of the apical and subapical regions of inner medullary collecting duct (IMCD) cells, with no labeling of outer medullary or cortical collecting ducts. Immunoelectron microscopy directly demonstrated labeling of the apical plasma membrane and of subapical intracellular vesicles of IMCD cells, but no labeling of the basolateral plasma membrane. Immunoblots demonstrated RUT labeling in both plasma membrane and intracellular vesicle-enriched membrane fractions from inner medulla, a subcellular distribution similar to that of the vasopressin-regulated water channel, aquaporin-2. In the outer medulla, RUT labeling was seen in terminal portions of short-loop descending thin limbs. Aside from IMCD and descending thin limbs, no other structures were labeled in the kidney. These results suggest that: (i) the RUT provides the apical pathway for rapid, vasopressin-regulated urea transport in the IMCD, (ii) collecting duct urea transport may be increased by vasopressin by stimulation of trafficking of RUT-containing vesicles to the apical plasma membrane, and (iii) the rat urea transporter may provide a pathway for urea entry into the descending limbs of short-loop nephrons.
Resumo:
Iron is an essential nutrient for virtually all organisms. The IRT1 (iron-regulated transporter) gene of the plant Arabidopsis thaliana, encoding a probable Fe(II) transporter, was cloned by functional expression in a yeast strain defective for iron uptake. Yeast expressing IRT1 possess a novel Fe(II) uptake activity that is strongly inhibited by Cd. IRT1 is predicted to be an integral membrane protein with a metal-binding domain. Data base comparisons and Southern blot analysis indicated that IRT1 is a member of a gene family in Arabidopsis. Related sequences were also found in the genomes of rice, yeast, nematodes, and humans. In Arabidopsis, IRT1 is expressed in roots, is induced by iron deficiency, and has altered regulation in plant lines bearing mutations that affect the iron uptake system. These results provide the first molecular insight into iron transport by plants.
Resumo:
A novel Saccharomyces cerevisiae mutant, unable to grow in the presence of 12.5 mM EGTA, was isolated by replica plating. The phenotype of the mutant is caused by a single amino acid change (Gly149 to Arg) in the essential yeast gene CDC1. The mutant could be suppressed by overexpression of the SMF1 gene, which was isolated as an extragenic high-copy suppressor. The SMF1 gene codes for a highly hydrophobic protein and its deletion renders the yeast cells sensitive to low manganese concentration. In accordance with this observation, the smf1 null mutant exhibits reduced Mn2+ uptake at micromolar concentrations. Using a specific antibody, we demonstrated that Smf1p is located in the yeast plasma membrane. These results suggest that Smf1p is involved in high-affinity Mn2+ uptake. This assumption was also tested by overexpressing the SMF1 gene in the temperature-sensitive mutant of the mitochondrial processing peptidase (MAS1). SMF1 overexpression as well as addition of 1 mM Mn2+ to the growth medium complemented this mutation. This also suggests that in vivo Mas1p is a manganese-dependent peptidase. The yeast Smf1p resembles a protein from Drosophila and mammalian macrophages. The latter was implicated in conferring resistance to mycobacteria. A connection between Mn2+ transport and resistance or sensitivity to mycobacteria is discussed.
Resumo:
A second isoform of the human vesicular monoamine transporter (hVMAT) has been cloned from a pheochromocytoma cDNA library. The contribution of the two transporter isoforms to monoamine storage in human neuroendocrine tissues was examined with isoform-specific polyclonal antibodies against hVMAT1 and hVMAT2. Central, peripheral, and enteric neurons express only VMAT2. VMAT1 is expressed exclusively in neuroendocrine, including chromaffin and enterochromaffin, cells. VMAT1 and VMAT2 are coexpressed in all chromaffin cells of the adrenal medulla. VMAT2 alone is expressed in histamine-storing enterochromaffin-like cells of the oxyntic mucosa of the stomach. The transport characteristics and pharmacology of each VMAT isoform have been directly compared after expression in digitonin-permeabilized fibroblastic (CV-1) cells, providing information about substrate feature recognition by each transporter and the role of vesicular monoamine storage in the mechanism of action of psychopharmacologic and neurotoxic agents in human. Serotonin has a similar affinity for both transporters. Catecholamines exhibit a 3-fold higher affinity, and histamine exhibits a 30-fold higher affinity, for VMAT2. Reserpine and ketanserin are slightly more potent inhibitors of VMAT2-mediated transport than of VMAT1-mediated transport, whereas tetrabenazine binds to and inhibits only VMAT2. N-methyl-4-phenylpyridinium, phenylethylamine, amphetamine, and methylenedioxymethamphetamine are all more potent inhibitors of VMAT2 than of VMAT1, whereas fenfluramine is a more potent inhibitor of VMAT1-mediated monamine transport than of VMAT2-mediated monoamine transport. The unique distributions of hVMAT1 and hVMAT2 provide new markers for multiple neuroendocrine lineages, and examination of their transport properties provides mechanistic insights into the pharmacology and physiology of amine storage in cardiovascular, endocrine, and central nervous system function.
Resumo:
Application of L-glutamate to retinal glial (Müller) cells results in an inwardly rectifying current due to the net influx of one positive charge per molecule of glutamate transported into the cell. However, at positive potentials an outward current can be elicited by glutamate. This outward current is eliminated by removal of external chloride ions. Substitution of external chloride with the anions thiocyanate, perchlorate, nitrate, and iodide, which are known to be more permeant at other chloride channels, results in a considerably larger glutamate-elicited outward current at positive potentials. The large outward current in external nitrate has the same ionic dependence, apparent affinity for L-glutamate, and pharmacology as the glutamate transporter previously reported to exist in these cells. Varying the concentration of external nitrate shifts the reversal potential in a manner consistent with a conductance permeable to nitrate. Together, these results suggest that the glutamate transporter in retinal glial cells is associated with an anionic conductance. This anionic conductance may be important for preventing a reduction in the rate of transport due the depolarization that would otherwise occur as a result of electrogenic glutamate uptake.
Resumo:
Immunohistochemical visualization of the rat vesicular acetylcholine transporter (VAChT) in cholinergic neurons and nerve terminals has been compared to that for choline acetyltransferase (ChAT), heretofore the most specific marker for cholinergic neurons. VAChT-positive cell bodies were visualized in cerebral cortex, basal forebrain, medial habenula, striatum, brain stem, and spinal cord by using a polyclonal anti-VAChT antiserum. VAChT-immuno-reactive fibers and terminals were also visualized in these regions and in hippocampus, at neuromuscular junctions within skeletal muscle, and in sympathetic and parasympathetic autonomic ganglia and target tissues. Cholinergic nerve terminals contain more VAChT than ChAT immunoreactivity after routine fixation, consistent with a concentration of VAChT within terminal neuronal arborizations in which secretory vesicles are clustered. These include VAChT-positive terminals of the median eminence or the hypothalamus, not observed with ChAT antiserum after routine fixation. Subcellular localization of VAChT in specific organelles in neuronal cells was examined by immunoelectron microscopy in a rat neuronal cell line (PC 12-c4) expressing VAChT as well as the endocrine and neuronal forms of the vesicular monoamine transporters (VMAT1 and VMAT2). VAChT is targeted to small synaptic vesicles, while VMAT1 is found mainly but not exclusively on large dense-core vesicles. VMAT2 is found on large dense-core vesicles but not on the small synaptic vesicles that contain VAChT in PC12-c4 cells, despite the presence of VMAT2 immunoreactivity in central and peripheral nerve terminals known to contain monoamines in small synaptic vesicles. Thus, VAChT and VMAT2 may be specific markers for "cholinergic" and "adrenergic" small synaptic vesicles, with the latter not expressed in nonstimulated neuronally differentiated PC12-c4 cells.
Resumo:
Adult Schistosoma mansoni blood flukes reside in the mesenteric veins of their vertebrate hosts, where they absorb immense quantities of glucose through their tegument by facilitated diffusion. Previously, we obtained S. mansoni cDNAs encoding facilitated-diffusion schistosome glucose transporter proteins 1 and 4 (SGTP1 and SGTP4) and localized SGTP1 to the basal membranes of the tegument and the underlying muscle. In this study, we characterize the expression and localization of SGTP4 during the schistosome life cycle. Antibodies specific to SGTP4 appear to stain only the double-bilayer, apical membranes of the adult parasite tegument, revealing an asymmetric distribution relative to the basal transporter SGTP1. On living worms, SGTP4 is available to surface biotinylation, suggesting that it is exposed at the hose-parasite interface. SGTP4 is detected shortly after the transformation of free-living, infectious cercariae into schistosomula and coincides with the appearance of the double membrane. Within 15 min after transformation, anti-SGTP4 staining produces a bright, patchy distribution at the surface of schistosomula, which becomes contiguous over the entire surface of the schistosomula by 24 hr after transformation. SGTP4 is not detected in earlier developmental stages (eggs, sporocysts, and cercariae) that do not possess the specialized double membrane. Thus, SGTP4 appears to be expressed only in the mammalian stages of the parasite's life cycle and specifically localized within the host-interactive, apical membranes of the tegument.
Resumo:
The yeast Saccharomyces cerevisiae has two separate systems for zinc uptake. One system has high affinity for substrate and is induced in zinc-deficient cells. The second system has lower affinity and is not highly regulated by zinc status. The ZRT1 gene encodes the transporter for the high-affinity system, called Zrt1p. The predicted amino acid sequence of Zrt1p is similar to that of Irt1p, a probable Fe(II) transporter from Arabidopsis thaliana. Like Irt1p, Zrt1p contains eight potential transmembrane domains and a possible metal-binding domain. Consistent with the proposed role of ZRT1 in zinc uptake, overexpressing this gene increased high-affinity uptake activity, whereas disrupting it eliminated that activity and resulted in poor growth of the mutant in zinc-limited media. Furthermore, ZRT1 mRNA levels and uptake activity were closely correlated, as was zinc-limited induction of a ZRT1-lacZ fusion. These results suggest that ZRT1 is regulated at the transcriptional level by the intracellular concentration of zinc. ZRT1 is an additional member of a growing family of metal transport proteins.
Resumo:
The primary metabolic characteristic of malignant cells is an increased uptake of glucose and its anaerobic metabolism. We studied the expression and function of the glucose transporters in human breast cancer cell lines and analyzed their expression in normal and neoplastic primary human breast tissue. Hexose uptake assays and immunoblotting experiments revealed that the breast carcinoma cell lines MCF-7 and MDA-468 express the glucose transporters GLUT1 and GLUT2, isoforms expressed in both normal and neoplastic breast tissue. We also found that the breast cancer cell lines transport fructose and express the fructose transporter GLUT5. Immunolocalization studies revealed that GLUT5 is highly expressed in vivo in human breast cancer but is absent in normal human breast tissue. These findings indicate that human breast cancer cells have a specialized capacity to transport fructose, a metabolic substrate believed to be used by few human tissues. Identification of a high-affinity fructose transporter on human breast cancer cells opens opportunities to develop novel strategies for early diagnosis and treatment of breast cancer.
Resumo:
Current produced by a gamma-aminobutyrate (GABA) transporter stably transfected into a mammalian cell line was observed in cell-attached and excised membrane patches. When GABA was absent, a fraction of the transporters produced cation-permeable channels. When GABA plus Na+ was on either side of the membrane, the majority of transporters produced a high-frequency current noise attributed to the movement of ions in an occluded pore.
Resumo:
The presence of a proton-coupled electrogenic high-affinity peptide transporter in the apical membrane of tubular cells has been demonstrated by microperfusion studies and by use of brush border membrane vesicles. The transporter mediates tubular uptake of filtered di- and tripeptides and aminocephalosporin antibiotics. We have used expression cloning in Xenopus laevis oocytes for identification and characterization of the renal high-affinity peptide transporter. Injection of poly(A)+ RNA isolated from rabbit kidney cortex into oocytes resulted in expression of a pH-dependent transport activity for the aminocephalosporin antibiotic cefadroxil. After size fractionation of poly(A)+ RNA the transport activity was identified in the 3.0- to 5.0-kb fractions, which were used for construction of a cDNA library. The library was screened for expression of cefadroxil transport after injection of complementary RNA synthesized in vitro from different pools of clones. A single clone (rPepT2) was isolated that stimulated cefadroxil uptake into oocytes approximately 70-fold at a pH of 6.0. Kinetic analysis of cefadroxil uptake expressed by the transporter's complementary RNA showed a single saturable high-affinity transport system shared by dipeptides, tripeptides, and selected amino-beta-lactam antibiotics. Electrophysiological studies established that the transport activity is electrogenic and affected by membrane potential. Sequencing of the cDNA predicts a protein of 729 amino acids with 12 membrane-spanning domains. Although there is a significant amino acid sequence identity (47%) to the recently cloned peptide transporters from rabbit and human small intestine, the renal transporter shows distinct structural and functional differences.
Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis.
Resumo:
In most plants amino acids represent the major transport form for organic nitrogen. A sensitive selection system in yeast mutants has allowed identification of a previously unidentified amino acid transporter in Arabidopsis. AAT1 encodes a hydrophobic membrane protein with 14 membrane-spanning regions and shares homologies with the ecotropic murine leukemia virus receptor, a bifunctional protein serving also as a cationic amino acid transporter in mammals. When expressed in yeast, AAT1 mediates high-affinity transport of basic amino acids, but to a lower extent also recognizes acidic and neutral amino acids. AAT1-mediated histidine transport is sensitive to protonophores and occurs against a concentration gradient, indicating that AAT1 may function as a proton symporter. AAT1 is specifically expressed in major veins of leaves and roots and in various floral tissues--i.e., and developing seeds.
Resumo:
Elevation in the rate of glucose transport in polyoma virus-infected mouse fibroblasts was dependent upon phosphatidylinositol 3-kinase (PI 3-kinase; EC 2.7.1.137) binding to complexes of middle tumor antigen (middle T) and pp60c-src. Wild-type polyoma virus infection led to a 3-fold increase in the rate of 2-deoxyglucose (2DG) uptake, whereas a weakly transforming polyoma virus mutant that encodes a middle T capable of activating pp60c-src but unable to promote binding of PI 3-kinase induced little or no change in the rate of 2DG transport. Another transformation-defective mutant encoding a middle T that retains functional binding of both pp60c-src and PI 3-kinase but is incapable of binding Shc (a protein involved in activation of Ras) induced 2DG transport to wild-type levels. Wortmannin (< or = 100 nM), a known inhibitor of PI 3-kinase, blocked elevation of glucose transport in wild-type virus-infected cells. In contrast to serum stimulation, which led to increased levels of glucose transporter 1 (GLUT1) RNA and protein, wild-type virus infection induced no significant change in levels of either GLUT1 RNA or protein. Nevertheless, virus-infected cells did show increases in GLUT1 protein in plasma membranes. These results point to a posttranslational mechanism in the elevation of glucose transport by polyoma virus middle T involving activation of PI 3-kinase and translocation of GLUT1.