68 resultados para ATP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrophoretic export of ATP against the import of ADP in mitochondria bridges the intra- versus extramitochondrial ATP potential gap. Here we report that the electrical nature of the ADP/ATP exchange by the mitochondrial ADP/ATP carrier (AAC) can be directly studied by measuring the electrical currents via capacitive coupling of AAC-containing vesicles on a planar lipid membrane. The currents were induced by the rapid liberation of ATP or ADP with UV flash photolysis from caged nucleotides. Six different transport modes of the AAC were studied: heteroexchange with either ADP or ATP inside the vesicles, initiated by photolysis of caged ATP or ADP; homoexchange with ADPex/ADPin or ATPex/ATPin; and caged ADP or ATP with unloaded vesicles. The heteroexchange produced the largest currents with the longest duration in line with the electrical charge difference ATP4- versus ADP3-. Surprisingly, also in the homoexchange and with unloaded vesicles, small currents were measured with shorter duration. In all three modes with caged ATP, a negative charge moved into the vesicles and with caged ADP it moved out of the vesicles. All currents were completely inhibited by a mixture of the inhibitors of the AAC, carboxyatractyloside and hongkrekate, which proves that the currents are exclusively due to AAC function. The observed charge movements in the heteroexchange system agree with the prediction from transport studies in mitochondria and reconstituted vesicles. The unexpected charge movements in the homoexchange or unloaded systems are interpreted to reveal transmembrane rearrangements of charged sites in the AAC when occupied with ADP or ATP. The results also indicate that not only ATP4- but also ADP3- contribute, albeit in opposite direction, to the electrical nature of the ADP/ATP exchange, which is at variance with former conclusions from biochemical transport studies. These measurements open up new avenues of studying the electrical interactions of ADP and ATP with the AAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism by which the endogenous vasodilator adenosine causes ATP-sensitive potassium (KATP) channels in arterial smooth muscle to open was investigated by the whole-cell patch-clamp technique. Adenosine induced voltage-independent, potassium-selective currents, which were inhibited by glibenclamide, a blocker of KATP currents. Glibenclamide-sensitive currents were also activated by the selective adenosine A2-receptor agonist 2-p-(2-carboxethyl)-phenethylamino-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680), whereas 2-chloro-N6-cyclopentyladenosine (CCPA), a selective adenosine A1-receptor agonist, failed to induce potassium currents. Glibenclamide-sensitive currents induced by adenosine and CGS-21680 were largely reduced by blockers of the cAMP-dependent protein kinase (Rp-cAMP[S], H-89, protein kinase A inhibitor peptide). Therefore, we conclude that adenosine can activate KATP currents in arterial smooth muscle through the following pathway: (i) Adenosine stimulates A2 receptors, which activates adenylyl cyclase; (ii) the resulting increase intracellular cAMP stimulates protein kinase A, which, probably through a phosphorylation step, opens KATP channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretion of anionic endo- and xenobiotics is essential for the survival of animal and plant cells; however, the underlying molecular mechanisms remain uncertain. To better understand one such model system--i.e., secretion of bile acids by the liver--we utilized a strategy analogous to that employed to identify the multidrug resistance (mdr) genes. We synthesized the methyl ester of glycocholic acid (GCE), which readily enters cells, where it is hydrolyzed to yield glycocholic acid, a naturally occurring bile acid. The rat hepatoma-derived HTC cell line gradually acquired resistance to GCE concentrations 20-fold higher than those which inhibited growth of naive cells, yet intracellular accumulation of radiolabel in resistant cells exposed to [14C]GCE averaged approximately 25% of that in nonresistant cells. As compared with nonresistant cells, resistant cells also exhibited (i) cross-resistance to colchicine, a known mdr substrate, but not to other noxious substances transported by hepatocytes; (ii) increased abundance on Northern blot of mRNA species up to 7-10 kb recognized by a probe for highly conserved nucleotide-binding domain (NBD) sequences of ATP-binding cassette (ABC) proteins; (iii) increased abundance, as measured by RNase protection assay, of mRNA fragments homologous to a NBD cRNA probe; and (iv) dramatic overexpression, as measured by Western blotting and immunofluorescence, of a group of 150- to 200-kDa plasma membrane proteins recognized by a monoclonal antibody against a region flanking the highly conserved NBD of mdr/P-glycoproteins. Finally, Xenopus laevis oocytes injected with mRNA from resistant cells and incubated with [14C]GCE secreted radiolabel more rapidly than did control oocytes. Enhanced secretion of glycocholic acid in this cell line is associated with overexpression of ABC/mdr-related proteins, some of which are apparently novel and are likely to include a bile acid transport protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of an Aeromonas salmonicida A layer-deficient/O polysaccharide-deficient mutant carrying a Tn5 insertion in the structural gene for A protein (vapA) showed that the abcA gene immediately downstream of vapA had been interrupted by the endogenous insertion sequence element ISAS1. Immunoelectron microscopy showed that O polysaccharides did not accumulate at the inner membrane-cytoplasm interface of this mutant. abcA encodes an unusual protein; it carries both an amino-terminal ATP-binding cassette (ABC) domain showing high sequence similarity to ABC proteins implicated in the transport of certain capsular and O polysaccharides and a carboxyl-terminal potential DNA-binding domain, which distinguishes AbcA from other polysaccharide transport proteins in structural and evolutionary terms. The smooth lipopolysaccharide phenotype was restored by complementation with abcA but not by abcA carrying site-directed mutations in the sequence encoding the ATP-binding site of the protein. The genetic organization of the A. salmonicida ABC polysaccharide system differs from other bacteria. abcA also differs in apparently being required for both O-polysaccharide synthesis and in energizing the transport of O polysaccharides to the cell surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite a rapidly increasing acceptance for a role of ATP as an extracellular mediator in several biological systems, the present report shows that ATP may mediate physiological responses in pituitary cells. We have now been able to demonstrate a specific action of ATP receptors to mediate the release of luteinizing hormone from gonadotropes and have coupled them with further studies that clearly show that ATP can be exocytotically released from cultured rat pituitary cells. Both ATP and UTP (100 microM) caused a > 14-fold increase in the rate of luteinizing hormone release from superfused cells. Adenosine 5'-[alpha, beta-methylene]triphosphate and 5'-[beta,gamma-methylene triphosphate were ineffective, and 2-methylthio-ATP had only a modest stimulatory effect. Homologous and heterologous desensitization occurred with UTP and ATP, and these did not have additive effects. Thus, nucleotides can be effective stimulators of luteinizing hormone release through a single class of ATP receptor (P2U subtype). The calcium ionophore A23187 provoked release of a substantial amount of ATP from pituitary cells in a concentration- and Ca(2+)-dependent manner, which was desensitized by pretreatment with A23187. This implies a possible paracrine and/or autocrine mechanism by which nucleotides may exert their effects on pituitary cells. In conclusion, we have provided strong evidence for a novel role of extracellular nucleotides as mediators in pituitary--in particular, in gonadotrope--function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preconditioning with sublethal ischemia protects against neuronal damage after subsequent lethal ischemic insults in hippocampal neurons. A pharmacological approach using agonists and antagonists at the adenosine A1 receptor as well as openers and blockers of ATP-sensitive K+ channels has been combined with an analysis of neuronal death and gene expression of subunits of glutamate and gamma-aminobutyric acid receptors, HSP70, c-fos, c-jun, and growth factors. It indicates that the mechanism of ischemic tolerance involves a cascade of events including liberation of adenosine, stimulation of adenosine A1 receptors, and, via these receptors, opening of sulfonylurea-sensitive ATP-sensitive K+ channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rat glucocorticoid receptor confers hormone-dependent transcriptional enhancement when expressed in yeast, thereby enabling the genetic identification of nonreceptor proteins that function in the hormone signal-transduction pathway. We isolated a yeast mutant, lem1, with increased sensitivity to dexamethasone and triamcinolone acetonide; responsiveness to a third agonist, deoxycorticosterone, is unaffected. Cloning of wild-type LEM1 revealed a putative transport protein of the ATP-binding cassette family. Dexamethasone accumulation is increased in lem1 cells, suggesting that wild-type LEM1 decreases dexamethasone potency by exporting this ligand. LEM1 appears to affect certain steroids and not others. We propose that transporters like LEM1 can selectively modulate the intracellular levels of steroid hormones. Differential activities of such transporters in mammalian cells might regulate hormone availability and thereby hormone signaling in a cell-type specific manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-strand exchange promoted by Escherichia coli RecA protein normally requires the presence of ATP and is accompanied by ATP hydrolysis, thereby implying a need for ATP hydrolysis. Previously, ATP hydrolysis was shown not to be required; here we demonstrate furthermore that a nucleoside triphosphate cofactor is not required for DNA-strand exchange. A gratuitous allosteric effector consisting of the noncovalent complex of ADP and aluminum fluoride, ADP.AIF4-, can both induce the high-affinity DNA-binding state of RecA protein and support the homologous pairing and exchange of up to 800-900 bp of DNA. These results demonstrate that induction of the functionally active, high-affinity DNA-binding state of RecA protein is needed for RecA protein-promoted DNA-strand exchange and that there is no requirement for a high-energy nucleotide cofactor for the exchange of DNA strands. Consequently, the free energy needed to activate the DNA substrates for DNA-strand exchange is not derived from ATP hydrolysis. Instead, the needed free energy is derived from ligand binding and is transduced to the DNA via the associated ligand-induced structural transitions of the RecA protein-DNA complex; ATP hydrolysis simply destroys the effector ligand. This concept has general applicability to the mechanism of energy transduction by proteins.