72 resultados para 20S proteasome


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intracellular degradation of many proteins is mediated in an ATP-dependent manner by large assemblies comprising a chaperone ring complex associated coaxially with a proteolytic cylinder, e.g., ClpAP, ClpXP, and HslUV in prokaryotes, and the 26S proteasome in eukaryotes. Recent studies of the chaperone ClpA indicate that it mediates ATP-dependent unfolding of substrate proteins and directs their ATP-dependent translocation into the ClpP protease. Because the axial passageway into the proteolytic chamber is narrow, it seems likely that unfolded substrate proteins are threaded from the chaperone into the protease, suggesting that translocation could be directional. We have investigated directionality in the ClpA/ClpP-mediated reaction by using two substrate proteins bearing the COOH-terminal ssrA recognition element, each labeled near the NH2 or COOH terminus with fluorescent probes. Time-dependent changes in both fluorescence anisotropy and fluorescence resonance energy transfer between donor fluorophores in the ClpP cavity and the substrate probes as acceptors were measured to monitor translocation of the substrates from ClpA into ClpP. We observed for both substrates that energy transfer occurs 2–4 s sooner with the COOH-terminally labeled molecules than with the NH2-terminally labeled ones, indicating that translocation is indeed directional, with the COOH terminus of the substrate protein entering ClpP first.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p19ARF suppresses the growth of cells lacking p53 through an unknown mechanism. p19ARF was found to complex with transcription factors E2F1, -2, and -3. Levels of endogenous or ectopically expressed E2F1, -2, and -3, but not E2F6, were reduced after synthesis of p19ARF, through a mechanism involving increased turnover. p19ARF-induced degradation of E2F1 depended on a functional proteasome, and E2F1 was relocalized to nucleoli when coexpressed with p19ARF. Consistent with reduced levels of E2F1 and E2F3, the proliferation of cells defective for p53 function was suppressed by p19ARF, and the effect was partially reversed by ectopic overexpression of E2F1. These results suggest a broader role for p19ARF as a tumor suppressor, in which targeting of certain E2F species may cooperate with stimulation of the p53 pathway to counteract oncogenic growth signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major goal of plant biotechnology is the production of genetically engineered crops that express natural or foreign proteins at high levels. To enhance protein accumulation in transgenic plants, we developed a set of vectors that express proteins and peptides as C-terminal translational fusions with ubiquitin (UBQ). Studies of several proteins in tobacco (Nicotiana tabacum) showed that: (a) proteins can be readily expressed in plants as UBQ fusions; (b) by the action of endogenous UBQ-specific proteases (Ubps), these fusions are rapidly and precisely processed in vivo to release the fused protein moieties in free forms; (c) the synthesis of a protein as a UBQ fusion can significantly augment its accumulation; (d) proper processing and localization of a protein targeted to either the apoplast or the chloroplast is not affected by the N-terminal UBQ sequence; and (e) single amino acid substitutions surrounding the cleavage site can inhibit in vivo processing of the fusion by Ubps. Noncleavable UBQ fusions of β-glucuronidase became extensively modified, with additional UBQs in planta. Because multiubiquitinated proteins are the preferred substrates of the 26S proteasome, noncleavable fusions may be useful for decreasing protein half-life. Based on their ability to augment protein accumulation and the sequence specificity of Ubps, UBQ fusions offer a versatile way to express plant proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although there is considerable evidence that PrPSc is the infectious form of the prion protein, it has recently been proposed that a transmembrane variant called CtmPrP is the direct cause of prion-associated neurodegeneration. We report here, using a mutant form of PrP that is synthesized exclusively with the CtmPrP topology, that CtmPrP is retained in the endoplasmic reticulum and is degraded by the proteasome. We also demonstrate that CtmPrP contains an uncleaved, N-terminal signal peptide as well as a C-terminal glycolipid anchor. These results provide insight into general mechanisms that control the topology of membrane proteins during their synthesis in the endoplasmic reticulum, and they also suggest possible cellular pathways by which CtmPrP may cause disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane and secretory proteins fold in the endoplasmic reticulum (ER), and misfolded proteins may be retained and targeted for ER-associated protein degradation (ERAD). To elucidate the mechanism by which an integral membrane protein in the ER is degraded, we studied the fate of the cystic fibrosis transmembrane conductance regulator (CFTR) in the yeast Saccharomyces cerevisiae. Our data indicate that CFTR resides in the ER and is stabilized in strains defective for proteasome activity or deleted for the ubiquitin-conjugating enzymes Ubc6p and Ubc7p, thus demonstrating that CFTR is a bona fide ERAD substrate in yeast. We also found that heat shock protein 70 (Hsp70), although not required for the degradation of soluble lumenal ERAD substrates, is required to facilitate CFTR turnover. Conversely, calnexin and binding protein (BiP), which are required for the proteolysis of ER lumenal proteins in both yeast and mammals, are dispensable for the degradation of CFTR, suggesting unique mechanisms for the disposal of at least some soluble and integral membrane ERAD substrates in yeast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Degradation of proteins that, because of improper or suboptimal processing, are retained in the endoplasmic reticulum (ER) involves retrotranslocation to reach the cytosolic ubiquitin-proteasome machinery. We found that substrates of this pathway, the precursor of human asialoglycoprotein receptor H2a and free heavy chains of murine class I major histocompatibility complex (MHC), accumulate in a novel preGolgi compartment that is adjacent to but not overlapping with the centrosome, the Golgi complex, and the ER-to-Golgi intermediate compartment (ERGIC). On its way to degradation, H2a associated increasingly after synthesis with the ER translocon Sec61. Nevertheless, it remained in the secretory pathway upon proteasomal inhibition, suggesting that its retrotranslocation must be tightly coupled to the degradation process. In the presence of proteasomal inhibitors, the ER chaperones calreticulin and calnexin, but not BiP, PDI, or glycoprotein glucosyltransferase, concentrate in the subcellular region of the novel compartment. The “quality control” compartment is possibly a subcompartment of the ER. It depends on microtubules but is insensitive to brefeldin A. We discuss the possibility that it is also the site for concentration and retrotranslocation of proteins that, like the mutant cystic fibrosis transmembrane conductance regulator, are transported to the cytosol, where they form large aggregates, the “aggresomes.”

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibitor of apoptosis (IAP) family of anti-apoptotic proteins regulate programmed cell death and/or apoptosis. One such protein, X-linked IAP (XIAP), inhibits the activity of the cell death proteases, caspase-3, -7, and -9. In this study, using constitutively active mutants of caspase-3, we found that XIAP promotes the degradation of active-form caspase-3, but not procaspase-3, in living cells. The XIAP mutants, which cannot interact with caspase-3, had little or no activity of promoting the degradation of caspase-3. RING finger mutants of XIAP also could not promote the degradation of caspase-3. A proteasome inhibitor suppressed the degradation of caspase-3 by XIAP, suggesting the involvement of a ubiquitin-proteasome pathway in the degradation. An in vitro ubiquitination assay revealed that XIAP acts as a ubiquitin-protein ligase for caspase-3. Caspase-3 was ubiquitinated in the presence of XIAP in living cells. Both the association of XIAP with caspase-3 and the RING finger domain of XIAP were essential for ubiquitination. Finally, the RING finger mutants of XIAP were less effective than wild-type XIAP at preventing apoptosis induced by overexpression of either active-form caspase-3 or Fas. These results demonstrate that the ubiquitin-protein ligase activity of XIAP promotes the degradation of caspase-3, which enhances its anti-apoptotic effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The infected cell protein 0 (ICP0) of herpes simplex virus 1, a promiscuous transactivator shown to enhance the expression of genes introduced into cells by infection or transfection, interacts with numerous cellular proteins and has been linked to the disruption of ND10 and degradation of several proteins. ICP0 contains a RING finger domain characteristic of a class of E3 ubiquitin ligases. We report that: (i) in infected cells, ICP0 interacts dynamically with proteasomes and is bound to proteasomes in the presence of the proteasome inhibitor MG132. Also in infected cells, cdc34, a polyubiquitinated E2 ubiquitin-conjugating enzyme, exhibits increased ICP0-dependent dynamic interaction with proteasomes. (ii) In an in vitro substrate-independent ubiquitination system, the RING finger domain encoded by exon 2 of ICP0 binds cdc34, whereas the carboxyl-terminal domain of ICP0 functions as an E3 ligase independent of the RING finger domain. The results indicate that ICP0 can act as a unimolecular E3 ubiquitin ligase and that it promotes ubiquitin-protein ligation and binds the E2 cdc34. It differs from other unimolecular E3 ligases in that the domain containing the RING finger binds E2, whereas the ligase activity maps to a different domain of the protein. The results also suggest that ICP0 shuttles between nucleus and cytoplasm as a function of its dynamic interactions with proteasomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteases are known to play important roles in cell growth control, although the underlying mechanisms are still poorly understood. Here we show that the protease inhibitor N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal induced cell cycle arrest in platelet-derived growth factor-stimulated human fibroblasts at the G1/S boundary of the cell cycle by inhibiting the proteasome. Inhibition of the proteasome resulted in accumulation of the tumor suppressor p53, which was followed by an increase in the amount of the cyclin-dependent kinase-inhibitor p21. As a consequence, both phosphorylation and activity of the cyclin-dependent kinase 2/cyclin E complex were inhibited. We further observed that the retinoblastoma gene product, pRb, remained in the hypophosphorylated state, thus preventing cells from progression into the S-phase. These studies strongly support the hypothesis that the proteasome is a key regulator in the G1-phase of cell cycle progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteasomes are involved in the proteolytic generation of major histocompatibility complex (MHC) class I epitopes but their exact role has not been elucidated. We used highly purified murine 20S proteasomes for digestion of synthetic 22-mer and 41/44-mer ovalbumin partial sequences encompassing either an immunodominant or a marginally immunogenic epitope. At various times, digests were analyzed by pool sequencing and by semiquantitative electrospray ionization mass spectrometry. Most dual cleavage fragments derived from 22-mer peptides were 7-10 amino acids long, with octa- and nonamers predominating. Digestion of 41/44-mer peptides initially revealed major cleavage sites spaced by two size ranges, 8 or 9 amino acids and 14 or 15 amino acids, followed by further degradation of the latter as well as of larger single cleavage fragments. The final size distribution was slightly broader than that of fragments derived from 22-mer peptides. The majority of peptide bonds were cleaved, albeit with vastly different efficiencies. This resulted in multiple overlapping proteolytic fragments including a limited number of abundant peptides. The immunodominant epitope was generated abundantly whereas only small amounts of the marginally immunogenic epitope were detected. The frequency distributions of amino acids flanking proteasomal cleavage sites are correlated to that reported for corresponding positions of MHC class I binding peptides. The results suggest that proteasomal degradation products may include fragments with structural properties similar to MHC class I binding peptides. Proteasomes may thus be involved in the final stages of proteolytic epitope generation, often without the need for downstream proteolytic events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular mechanisms responsible for enhanced muscle protein breakdown in hospitalized patients, which frequently results in lean body wasting, are unknown. To determine whether the lysosomal, Ca2+-activated, and ubiquitin-proteasome proteolytic pathways are activated, we measured mRNA levels for components of these processes in muscle biopsies from severe head trauma patients. These patients exhibited negative nitrogen balance and increased rates of whole-body protein breakdown (assessed by [13C]leucine infusion) and of myofibrillar protein breakdown (assessed by 3-methylhistidine urinary excretion). Increased muscle mRNA levels for cathepsin D, m-calpain, and critical components of the ubiquitin proteolytic pathway (i.e., ubiquitin, the 14-kDa ubiquitin-conjugating enzyme E2, and proteasome subunits) paralleled these metabolic adaptations. The data clearly support a role for multiple proteolytic processes in increased muscle proteolysis. The ubiquitin proteolytic pathway could be activated by altered glucocorticoid production and/or increased circulating levels of interleukin 1beta and interleukin 6 observed in head trauma patients and account for the breakdown of myofibrillar proteins, as was recently reported in animal studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibitor protein I kappa B alpha controls the nuclear import of the transcription factor NF-kappa B. The inhibitory activity of I kappa B alpha is regulated from the cytoplasmic compartment by signal-induced proteolysis. Previous studies have shown that signal-dependent phosphorylation of serine residues 32 and 36 targets I kappa B alpha to the ubiquitin-proteasome pathway. Here we provide evidence that lysine residues 21 and 22 serve as the primary sites for signal-induced ubiquitination of I kappa B alpha. Conservative Lys-->Arg substitutions at both Lys-21 and Lys-22 produce dominant-negative mutants of I kappa B alpha in vivo. These constitutive inhibitors are appropriately phosphorylated but fail to release NF-kappa B in response to multiple inducers, including viral proteins, cytokines, and agents that mimic antigenic stimulation through the T-cell receptor. Moreover, these Lys-->Arg mutations prevent signal-dependent degradation of I kappa B alpha in vivo and ubiquitin conjugation in vitro. We conclude that site-specific ubiquitination of phosphorylated I kappa B alpha at Lys-21 and/or Lys-22 is an obligatory step in the activation of NF-kappa B.