128 resultados para unidentified retrovirus
Resumo:
Stabilization of p53 in response to DNA damage is caused by its dissociation from Mdm2, a protein that targets p53 for degradation in the proteasome. Dissociation of p53 from Mdm2 could be caused by DNA damage-induced p53 posttranslational modifications. The ATM and ATR kinases, whose activation in response to ionizing radiation (IR) and UV light, respectively, is required for p53 stabilization, directly phosphorylate p53 on Ser-15. However, phosphorylation of Ser-15 is critical for the apoptotic activity of p53 and not for p53 stabilization. Thus, whether any p53 modifications, and which, underlie disruption of the p53–Mdm2 complex after DNA damage remains to be determined. We analyzed the IR- and UV light-induced stabilization of p53 proteins with substitutions of Ser known to be posttranslationally modified after DNA damage. Substitution of Ser-20 was sufficient to abrogate p53 stabilization in response to both IR and UV light. Furthermore, both IR and UV light induced phosphorylation of p53 on Ser-20, which involved the majority of nuclear p53 protein and weakened the interaction of p53 with Mdm2 in vitro. ATM and ATR cannot phosphorylate p53 on Ser-20. We therefore propose that ATM and ATR activate an, as yet unidentified, kinase that stabilizes p53 by phosphorylating it on Ser-20.
Resumo:
The intestinal epithelium is anatomically positioned to serve as the critical interface between the lumen and the mucosal immune system. In addition to MHC class I and II antigens, intestinal epithelia constitutively express the nonclassical MHC molecule CD1d, a transmembrane molecule with a short cytoplasmic tail expressed as a β2-microglobulin-associated 48-kDa glycoprotein and novel β2-microglobulin-independent 37-kDa nonglycosylated protein on intestinal epithelia. At present, it is not known whether extracellular ligands can signal intestinal epithelial CD1d. To define signaling of CD1d cytoplasmic tail, retrovirus-mediated gene transfer was used to generate stable cell lines expressing wild-type CD1d or a chimeric molecule (extracellular CD1d and cytoplasmic CD1a), and surface CD1d was triggered by antibody crosslinking. Although wild-type CD1d was readily activated (tyrosine phosphorylation), no demonstrable signal was evident in cell lines expressing the chimeric molecule. Subsequent studies revealed that anti-CD1d crosslinking specifically induces epithelial IL-10 mRNA and protein and is blocked by the tyrosine kinase inhibitor genistein. Further studies addressing epithelial-derived IL-10 revealed that anti-CD1d crosslinking attenuates IFN-γ signaling and that such attenuation is reversed by addition of functionally inhibitory IL-10 antibodies. These results define signaling through surface CD1d, and, importantly, they demonstrate that this pathway may serve to dampen epithelial proinflammatory signals.
Resumo:
STAT1 is an essential transcription factor for macrophage activation by IFN-γ and requires phosphorylation of the C-terminal Ser727 for transcriptional activity. In macrophages, Ser727 phosphorylation in response to bacterial lipopolysaccharide (LPS), UV irradiation, or TNF-α occurred through a signaling path sensitive to the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 whereas IFN-γ-mediated Ser727 phosphorylation was not inhibited by the drug. Consistently, SB203580 did not affect IFN-γ-mediated, Stat1-dependent transcription but inhibited its enhancement by LPS. Furthermore, LPS, UV irradiation, and TNF-α caused activation of p38 MAPK whereas IFN-γ did not. An essential role for p38 MAPK activity in STAT1 Ser727 phosphorylation was confirmed by using cells expressing an SB203580-resistant p38 MAPK. In such cells, STAT1 Ser727 phosphorylation in response to UV irradiation was found to be SB203580 insensitive. Targeted disruption of the mapkap-k2 gene, encoding a kinase downstream of p38 MAPK with a key role in LPS-stimulated TNF-α production and stress-induced heat shock protein 25 phosphorylation, was without a significant effect on UV-mediated Ser727 phosphorylation. The recombinant Stat1 C terminus was phosphorylated in vitro by p38MAPKα and β but not by MAPK-activated protein kinase 2. Janus kinase 2 activity, previously reported to be required for IFN-γ-mediated Ser727 phosphorylation, was not needed for LPS-mediated Ser727 phosphorylation, and activation of Janus kinase 2 did not cause the appearance of STAT1 Ser727 kinase activity. Our data suggest that STAT1 is phosphorylated at Ser727 by a stress-activated signaling pathway either through p38 MAPK directly or through an unidentified kinase downstream of p38MAPK.
Resumo:
Within hours after the ingestion of a blood meal, the mosquito midgut epithelium synthesizes a chitinous sac, the peritrophic matrix. Plasmodium ookinetes traverse the peritrophic matrix while escaping the mosquito midgut. Chitinases (EC 3.2.1.14) are critical for parasite invasion of the midgut: the presence of the chitinase inhibitor, allosamidin, in an infectious blood meal prevents oocyst development. A chitinase gene, PgCHT1, recently has been identified in the avian malaria parasite P. gallinaceum. We used the sequence of PgCHT1 to identify a P. falciparum chitinase gene, PfCHT1, in the P. falciparum genome database. PfCHT1 differs from PgCHT1 in that the P. falciparum gene lacks proenzyme and chitin-binding domains. PfCHT1 was expressed as an active recombinant enzyme in Escherichia coli. PfCHT1 shares with PgCHT1 a substrate preference unique to Plasmodium chitinases: the enzymes cleave tri- and tetramers of GlcNAc from penta- and hexameric oligomers and are unable to cleave smaller native chitin oligosaccharides. The pH activity profile of PfCHT1 and its IC50 (40 nM) to allosamidin are distinct from endochitinase activities secreted by P. gallinaceum ookinetes. Homology modeling predicts that PgCHT1 has a novel pocket in the catalytic active site that PfCHT1 lacks, which may explain the differential sensitivity of PfCHT1 and PgCHT1 to allosamidin. PfCHT1 may be the ortholog of a second, as yet unidentified, chitinase gene of P. gallinaceum. These results may allow us to develop novel strategies of blocking human malaria transmission based on interfering with P. falciparum chitinase.
Resumo:
The α9 acetylcholine receptor (α9 AChR) is specifically expressed in hair cells of the inner ear and is believed to be involved in synaptic transmission between efferent nerves and hair cells. Using a recently developed method, we modified a bacterial artificial chromosome containing the mouse α9 AChR gene with a reporter gene encoding green fluorescent protein (GFP) to generate transgenic mice. GFP expression in transgenic mice recapitulated the known temporal and spatial expression of α9 AChR. However, we observed previously unidentified dynamic changes in α9 AChR expression in cochlear and vestibular sensory epithelia during neonatal development. In the cochlea, inner hair cells persistently expressed high levels of α9 AChR in both the apical and middle turns, whereas both outer and inner hair cells displayed dynamic changes of α9 AChR expression in the basal turn. In the utricle, we observed high levels of α9 AChR expression in the striolar region during early neonatal development and high levels of α9 AChR in the extrastriolar region in adult mice. Further, simultaneous visualization of efferent innervation and α9 AChR expression showed that dynamic expression of α9 AChR in developing hair cells was independent of efferent contacts. We propose that α9 AChR expression in developing auditory and vestibular sensory epithelia correlates with maturation of hair cells and is hair-cell autonomous.
Resumo:
Cannabinoids, including the endogenous ligand arachidonyl ethanolamide (anandamide), elicit not only neurobehavioral but also cardiovascular effects. Two cannabinoid receptors, CB1 and CB2, have been cloned, and studies with the selective CB1 receptor antagonist SR141716A have implicated peripherally located CB1 receptors in the hypotensive action of cannabinoids. In rat mesenteric arteries, anandamide-induced vasodilation is inhibited by SR141716A, but other potent CB1 receptor agonists, such as HU-210, do not cause vasodilation, which implicates an as-yet-unidentified receptor in this effect. Here we show that “abnormal cannabidiol” (Abn-cbd) is a neurobehaviorally inactive cannabinoid that does not bind to CB1 receptors, yet causes SR141716A-sensitive hypotension and mesenteric vasodilation in wild-type mice and in mice lacking CB1 receptors or both CB1 and CB2 receptors. Hypotension by Abn-cbd is also inhibited by cannabidiol (20 μg/g), which does not influence anandamide- or HU-210-induced hypotension. In the rat mesenteric arterial bed, Abn-cbd-induced vasodilation is unaffected by blockade of endothelial NO synthase, cyclooxygenase, or capsaicin receptors, but it is abolished by endothelial denudation. Mesenteric vasodilation by Abn-cbd, but not by acetylcholine, sodium nitroprusside, or capsaicine, is blocked by SR141716A (1 μM) or by cannabidiol (10 μM). Abn-cbd-induced vasodilation is also blocked in the presence of charybdotoxin (100 nM) plus apamin (100 nM), a combination of K+-channel toxins reported to block the release of an endothelium-derived hyperpolarizing factor (EDHF). These findings suggest that Abn-cbd and cannabidiol are a selective agonist and antagonist, respectively, of an as-yet-unidentified endothelial receptor for anandamide, activation of which elicits NO-independent mesenteric vasodilation, possibly by means of the release of EDHF.
Resumo:
Spectrin is an important structural component of the plasma membrane skeleton. Heretofore-unidentified isoforms of spectrin also associate with Golgi and other organelles. We have discovered another member of the β-spectrin gene family by homology searches of the GenBank databases and by 5′ rapid amplification of cDNA ends of human brain cDNAs. Collectively, 7,938 nucleotides of contiguous clones are predicted to encode a 271,294-Da protein, called βIII spectrin, with conserved actin-, protein 4.1-, and ankyrin-binding domains, membrane association domains 1 and 2, a spectrin dimer self-association site, and a pleckstrin-homology domain. βIII spectrin transcripts are concentrated in the brain and present in the kidneys, liver, and testes and the prostate, pituitary, adrenal, and salivary glands. All of the tested tissues contain major 9.0-kb and minor 11.3-kb transcripts. The human βIII spectrin gene (SPTBN2) maps to chromosome 11q13 and the mouse gene (Spnb3) maps to a syntenic region close to the centromere on chromosome 19. Indirect immunofluorescence studies of cultured cells using antisera specific to human βIII spectrin reveal a Golgi-associated and punctate cytoplasmic vesicle-like distribution, suggesting that βIII spectrin associates with intracellular organelles. This distribution overlaps that of several Golgi and vesicle markers, including mannosidase II, p58, trans-Golgi network (TGN)38, and β-COP and is distinct from the endoplasmic reticulum markers calnexin and Bip. Liver Golgi membranes and other vesicular compartment markers cosediment in vitro with βIII spectrin. βIII spectrin thus constitutes a major component of the Golgi and vesicular membrane skeletons.
Resumo:
The existence of a common precursor for endothelial and hemopoietic cells, termed the hemangioblast, has been postulated since the beginning of the century. Recently, deletion of the endothelial-specific vascular endothelial growth factor receptor 2 (VEGFR2) by gene targeting has shown that both endothelial and hemopoietic cells are absent in homozygous null mice. This observation suggested that VEGFR2 could be expressed by the hemangioblast and essential for its further differentiation along both lineages. However, it was not possible to exclude the hypothesis that hemopoietic failure was a secondary effect resulting from the absence of an endothelial cell microenvironment. To distinguish between these two hypotheses, we have produced a mAb directed against the extracellular domain of avian VEGFR2 and isolated VEGFR2+ cells from the mesoderm of chicken embryos at the gastrulation stage. We have found that in clonal cultures, a VEGFR2+ cell gives rise to either a hemopoietic or an endothelial cell colony. The developmental decision appears to be regulated by the binding of two different VEGFR2 ligands. Thus, endothelial differentiation requires VEGF, whereas hemopoietic differentiation occurs in the absence of VEGF and is significantly reduced by soluble VEGFR2, showing that this process could be mediated by a second, yet unidentified, VEGFR2 ligand. These observations thus suggest strongly that in the absence of the VEGFR2 gene product, the precursors of both hemopoietic and vascular endothelial lineages cannot survive. These cells therefore might be the initial targets of the VEGFR2 null mutation.
Resumo:
The protective effects of estrogen in the cardiovascular system result from both systemic effects and direct actions of the hormone on the vasculature. Two estrogen receptors have been identified, ERα and ERβ. We demonstrated previously that estrogen inhibits the response to vascular injury in both wild-type and ERα-deficient mice, and that ERβ is expressed in the blood vessels of each, suggesting a role for ERβ in the vascular protective effects of estrogen. In the present study, we examined the effect of estrogen administration on mouse carotid arterial injury in ERβ-deficient mice. Surprisingly, in ovariectomized female wild-type and ERβ knockout mice, 17β-estradiol markedly and equally inhibited the increase in vascular medial area and the proliferation of vascular smooth muscle cells after vascular injury. These data demonstrate that ERβ is not required for estrogen-mediated inhibition of the response to vascular injury, and suggest that either of the two known estrogen receptors is sufficient to protect against vascular injury, or that another unidentified estrogen receptor mediates the vascular protective effects of estrogen.
Resumo:
Sik, the mouse homologue of the breast tumor kinase Brk, is expressed in differentiating cells of the gastrointestinal tract and skin. We examined expression and activity of Sik in primary mouse keratinocytes and a mouse embryonic keratinocyte cell line (EMK). Calcium-induced differentiation of these cells has been shown to be accompanied by the activation of tyrosine kinases and rapid phosphorylation of a 65-kDa GTPase-activating protein (GAP)-associated protein (GAP-A.p65). We demonstrate that Sik is activated within 2 min after calcium addition in primary keratinocytes and EMK cells. In EMK cells, Sik binds GAP-A.p65, and this interaction is mediated by the Sik Src homology 2 domain. Although Sik directly complexes with GAP-A.p65, overexpression of wild-type or kinase defective Sik in EMK cells does not lead to detectable changes in GAP-A.p65 phosphorylation. These data suggest that Sik is not responsible for phosphorylation of GAP-A.p65. GAP-A.p65 may act as an adapter protein, bringing Sik into proximity of an unidentified substrate. Overexpression of Sik in EMK cells results in increased expression of filaggrin during differentiation, supporting a role for Sik in differentiation.
Resumo:
E2a-Pbx1 is a chimeric transcription factor oncoprotein produced by the t(1;19) translocation in human pre-B cell leukemia. Class I Hox proteins bind DNA cooperatively with both Pbx proteins and oncoprotein E2a-Pbx1, suggesting that leukemogenesis by E2a-Pbx1 and Hox proteins may alter transcription of cellular genes regulated by Pbx–Hox motifs. Likewise, in murine myeloid leukemia, transcriptional coactivation of Meis1 with HoxA7/A9 suggests that Meis1–HoxA7/9 heterodimers may evoke aberrant gene transcription. Here, we demonstrate that both Meis1 and its relative, pKnox1, dimerize with Pbx1 on the same TGATTGAC motif selected by dimers of Pbx proteins and unidentified partner(s) in nuclear extracts, including those from t(1;19) pre-B cells. Outside their homeodomains, Meis1 and pKnox1 were highly conserved only in two motifs required for cooperativity with Pbx1. Like the unidentified endogenous partner(s), both Meis1 and pKnox1 failed to dimerize significantly with E2a-Pbx1. The Meis1/pKnox1-interaction domain in Pbx1 resided predominantly in a conserved N-terminal Pbx domain deleted in E2a-Pbx1. Thus, the leukemic potential of E2a-Pbx1 may require abrogation of its interaction with members of the Meis and pKnox families of transcription factors, permitting selective targeting of genes regulated by Pbx–Hox complexes. In addition, because most motifs bound by Pbx–Meis1/pKnox1 were not bound by Pbx1–Hox complexes, the leukemic potential of Meis1 in myeloid leukemias may involve shifting Pbx proteins from promoters containing Pbx–Hox motifs to those containing Pbx–Meis motifs.
Resumo:
HLA-G is the putative natural killer (NK) cell inhibitory ligand expressed on the extravillous cytotrophoblast of the human placenta. Killing of the class I negative human B cell line 721.221 by NK cells is inhibited by the expression of HLA-G. This inhibition is dependent on a high level of HLA-G expression. In the present study, the nature of the receptors that mediate the inhibition has been studied with 140 NK cell lines from two donors and 246 NK clones from 5 donors by blocking the inhibition using monoclonal antibodies against the known NK inhibitory receptors: CD158a, CD158b, and CD94. Both CD94 and the two CD158 proteins can function as receptors, although the former clearly predominates. In many cases, a combination of antibodies to these receptors is required to achieve maximal reversal of inhibition. Moreover, in at least one-third of the NK cells that are inhibited by HLA-G, these antibodies alone or in combination do not reverse inhibition, strongly suggesting the existence of a third major unidentified receptor for HLA-G.
Resumo:
rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin—a major nucleolar RNA-binding protein—contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.
Resumo:
Glycosylphosphatidylinositol (GPI)-anchored proteins are cell surface-localized proteins that serve many important cellular functions. The pathway mediating synthesis and attachment of the GPI anchor to these proteins in eukaryotic cells is complex, highly conserved, and plays a critical role in the proper targeting, transport, and function of all GPI-anchored protein family members. In this article, we demonstrate that MCD4, an essential gene that was initially identified in a genetic screen to isolate Saccharomyces cerevisiae mutants defective for bud emergence, encodes a previously unidentified component of the GPI anchor synthesis pathway. Mcd4p is a multimembrane-spanning protein that localizes to the endoplasmic reticulum (ER) and contains a large NH2-terminal ER lumenal domain. We have also cloned the human MCD4 gene and found that Mcd4p is both highly conserved throughout eukaryotes and has two yeast homologues. Mcd4p’s lumenal domain contains three conserved motifs found in mammalian phosphodiesterases and nucleotide pyrophosphases; notably, the temperature-conditional MCD4 allele used for our studies (mcd4–174) harbors a single amino acid change in motif 2. The mcd4–174 mutant (1) is defective in ER-to-Golgi transport of GPI-anchored proteins (i.e., Gas1p) while other proteins (i.e., CPY) are unaffected; (2) secretes and releases (potentially up-regulated cell wall) proteins into the medium, suggesting a defect in cell wall integrity; and (3) exhibits marked morphological defects, most notably the accumulation of distorted, ER- and vesicle-like membranes. mcd4–174 cells synthesize all classes of inositolphosphoceramides, indicating that the GPI protein transport block is not due to deficient ceramide synthesis. However, mcd4–174 cells have a severe defect in incorporation of [3H]inositol into proteins and accumulate several previously uncharacterized [3H]inositol-labeled lipids whose properties are consistent with their being GPI precursors. Together, these studies demonstrate that MCD4 encodes a new, conserved component of the GPI anchor synthesis pathway and highlight the intimate connections between GPI anchoring, bud emergence, cell wall function, and feedback mechanisms likely to be involved in regulating each of these essential processes. A putative role for Mcd4p as participating in the modification of GPI anchors with side chain phosphoethanolamine is also discussed.
Resumo:
Rho family GTPases have been implicated in the regulation of the actin cytoskeleton in response to extracellular cues and in the transduction of signals from the membrane to the nucleus. Their role in development and cell differentiation, however, is little understood. Here we show that the transient expression of constitutively active Rac1 and Cdc42 in unestablished avian myoblasts is sufficient to cause inhibition of myogenin expression and block of the transition to the myocyte compartment, whereas activated RhoA affects myogenic differentiation only marginally. Activation of c-Jun N-terminal kinase (JNK) appears not to be essential for block of differentiation because, although Rac1 and Cdc42 GTPases modestly activate JNK in quail myoblasts, a Rac1 mutant defective for JNK activation can still inhibit myogenic differentiation. Stable expression of active Rac1, attained by infection with a recombinant retrovirus, is permissive for terminal differentiation, but the resulting myotubes accumulate severely reduced levels of muscle-specific proteins. This inhibition is the consequence of posttranscriptional events and suggests the presence of a novel level of regulation of myogenesis. We also show that myotubes expressing constitutively active Rac1 fail to assemble ordered sarcomeres. Conversely, a dominant-negative Rac1 variant accelerates sarcomere maturation and inhibits v-Src–induced selective disassembly of I-Z-I complexes. Collectively, our findings provide a role for Rac1 during skeletal muscle differentiation and strongly suggest that Rac1 is required downstream of v-Src in the signaling pathways responsible for the dismantling of tissue-specific supramolecular structures.