79 resultados para regulatory elements


Relevância:

60.00% 60.00%

Publicador:

Resumo:

With global heavy metal contamination increasing, plants that can process heavy metals might provide efficient and ecologically sound approaches to sequestration and removal. Mercuric ion reductase, MerA, converts toxic Hg2+ to the less toxic, relatively inert metallic mercury (Hg0) The bacterial merA sequence is rich in CpG dinucleotides and has a highly skewed codon usage, both of which are particularly unfavorable to efficient expression in plants. We constructed a mutagenized merA sequence, merApe9, modifying the flanking region and 9% of the coding region and placing this sequence under control of plant regulatory elements. Transgenic Arabidopsis thaliana seeds expressing merApe9 germinated, and these seedlings grew, flowered, and set seed on medium containing HgCl2 concentrations of 25-100 microM (5-20 ppm), levels toxic to several controls. Transgenic merApe9 seedlings evolved considerable amounts of Hg0 relative to control plants. The rate of mercury evolution and the level of resistance were proportional to the steady-state mRNA level, confirming that resistance was due to expression of the MerApe9 enzyme. Plants and bacteria expressing merApe9 were also resistant to toxic levels of Au3+. These and other data suggest that there are potentially viable molecular genetic approaches to the phytoremediation of metal ion pollution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

beta 2-Microglobulin is an essential subunit of major histocompatibility complex (Mhc) class I molecules, which present antigenic peptides to T lymphocytes. We sequenced a number of cDNAs and two genomic clones corresponding to chicken beta 2-microglobulin. The chicken beta 2-microglobulin gene has a similar genomic organization but smaller introns and higher G+C content than mammalian beta 2-microglobulin genes. The promoter region is particularly G+C-rich and contains, in addition to interferon regulatory elements, potential S/W, X, and Y boxes that were originally described for mammalian class II but not class I alpha or beta 2-microglobulin genes. There is a single chicken beta 2-microglobulin gene that has little polymorphism in the coding region. Restriction fragment length polymorphisms from Mhc homozygous lines, Mhc congenic lines, and backcross families, as well as in situ hybridization, show that the beta 2-microglobulin gene is located on a microchromosome different from the one that contains the chicken Mhc. We propose that the structural similarities between the beta 2-microglobulin and Mhc genes in the chicken are due to their presence on microchromosomes and suggest that these features and the microchromosomes appeared by deletion of DNA in the lineage leading to the birds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have analyzed the developmental pattern of beta-galactosidase (beta-gal) expression in the cerebral cortex of the beta 2nZ3'1 transgenic mouse line, which was generated using regulatory elements of the beta 2-microglobulin gene and shows ectopic expression in nervous tissue. From embryonic day 10 onward, beta-gal was expressed in the medial and dorsal cortices, including the hippocampal region, whereas lateral cortical areas were devoid of labeling. During the period of cortical neurogenesis (embryonic days 11-17), beta-gal was expressed by selective precursors in the proliferative ventricular zone of the neocortex and hippocampus, as well as by a number of migrating and postmigratory neurons arranged into narrow radial stripes above the labeled progenitors. Thus, the transgene labels a subset of cortical progenitors and their progeny. Postnatally, radial clusters of beta-gal-positive neurons were discernible until postpartum day 10. At this age, the clusters were 250 to 500 microns wide, composed of neurons spanning all the cortical layers and exhibiting several neuronal phenotypes. These data suggest molecular heterogeneity of cortical progenitors and of the cohorts of postmitotic neurons originating from them, which implies intrinsic molecular mosaicism in both cortical progenitors and developing neurons. Furthermore, the data show that neurons committed to the expression of the transgene migrate along very narrow, radial stripes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Src homology 3 (SH3) domain is a 50-aa modular unit present in many cellular proteins involved in intracellular signal transduction. It functions to direct protein-protein interactions through the recognition of proline-rich motifs on associated proteins. SH3 domains are important regulatory elements that have been demonstrated to specify distinct regulatory pathways important for cell growth, migration, differentiation, and responses to the external milieu. By the use of synthetic peptides, ligands have been shown to consist of a minimum core sequence and to bind to SH3 domains in one of two pseudosymmetrical orientations, class I and class II. The class I sites have the consensus sequence ZP(L/P)PP psi P whereas the class II consensus is PP psi PPZ (where psi is a hydrophobic residue and Z is a SH3 domain-specific residue). We previously showed by M13 phage display that the Src, Fyn, Lyn, and phosphatidylinositol 3-kinase (PI3K) SH3 domains preferred the same class I-type core binding sequence, RPLPP psi P. These results failed to explain the specificity for cellular proteins displayed by SH3 domains in cells. In the current study, class I and class II core ligand sequences were displayed on the surface of bacteriophage M13 with five random residues placed either N- or C-terminal of core ligand residues. These libraries were screened for binding to the Src, Fyn, Lyn, Yes, and PI3K SH3 domains. By this approach, additional ligand residue preferences were identified that can increase the affinity of SH3 peptide ligands at least 20-fold compared with core peptides. The amino acids selected in the flanking sequences were similar for Src, Fyn, and Yes SH3 domains; however, Lyn and PI3K SH3 domains showed distinct binding specificities. These results indicate that residues that flank the core binding sequences shared by many SH3 domains are important determinants of SH3 binding affinity and selectivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although both Ras1 and Ras2 activate adenylyl cyclase in yeast, a number of differences can be observed regarding their function in the cAMP pathway. To explore the relative contribution of conserved and variable domains in determining these differences, chimeric RAS1-RAS2 or RAS2-RAS1 genes were constructed by swapping the sequences encoding the variable C-terminal domains. These constructs were expressed in a cdc25ts ras1 ras2 strain. Biochemical data show that the difference in efficacy of adenylyl cyclase activation between the two Ras proteins resides in the highly conserved N-terminal domain. This finding is supported by the observation that Ras2 delta, in which the C-terminal domain of Ras2 has been deleted, is a more potent activator of the yeast adenylyl cyclase than Ras1 delta, in which the C-terminal domain of Ras1 has been deleted. These observations suggest that amino acid residues other than the highly conserved residues of the effector domain within the N terminus may determine the efficiency of functional interaction with adenylyl cyclase. Similar levels of intracellular cAMP were found in Ras1, Ras1-Ras2, Ras1 delta, Ras2, and Ras2-Ras1 strains throughout the growth curve. This was found to result from the higher expression of Ras1 and Ras1-Ras2, which compensate for their lower efficacy in activating adenylyl cyclase. These results suggest that the difference between the Ras1 and the Ras2 phenotype is not due to their different efficacy in activating the cAMP pathway and that the divergent C-terminal domains are responsible for these differences, through interaction with other regulatory elements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

mRNAs for acetylcholine receptor genes are highly concentrated in the endplate region of adult skeletal muscle largely as a result of a transcription restricted to the subneural nuclei. To identify the regulatory elements involved, we employed a DNA injection of a plasmid containing a fragment of the acetylcholine receptor delta-subunit gene promoter (positions -839 to +45) linked to the reporter gene lacZ with a nuclear localization signal. Injection of the wild-type construct into mouse leg muscles yielded preferential expression of the reporter gene in the synaptic region. Analysis of various mutant promoters resulted in the identification of a DNA element (positions -60 to -49), referred to as the N box, that plays a critical role in subneural expression. Disruption of this 12-bp element in the context of a mouse delta-subunit promoter from positions -839 to +45 gives widespread expression of the reporter gene throughout the entire muscle fiber, indicating that this element is a silencer that represses delta-subunit gene transcription in extrajunctional areas. On the other hand, this element inserted upstream of a heterologous basal promoter preferentially enhances expression in the endplate region. This element therefore regulates the restricted expression of the delta-subunit gene both as an enhancer at the endplate level and as a silencer in extrajunctional areas. Furthermore, gel-shift experiments with mouse muscle extracts reveal an activity that specifically binds the 6-bp sequence TTCCGG of this element, suggesting that a transcription factor(s) controls the expression of the delta-subunit gene via this element.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

beta zero-Thalassemia is an inherited disorder characterized by the absence of beta-globin polypeptides derived from the affected allele. The molecular basis for this deficiency is a mutation of the adult beta-globin structural gene or cis regulatory elements that control beta-globin gene expression. A mouse model of this disease would enable the testing of therapeutic regimens designed to correct the defect. Here we report a 16-kb deletion that includes both adult beta-like globin genes, beta maj and beta min, in mouse embryonic stem cells. Heterozygous animals derived from the targeted cells are severely anemic with dramatically reduced hemoglobin levels, abnormal red cell morphology, splenomegaly, and markedly increased reticulocyte counts. Homozygous animals die in utero; however, heterozygous mice are fertile and transmit the deleted allele to progeny. The anemic phenotype is completely rescued in progeny derived from mating beta zero-thalassemic animals with transgenic mice expressing high levels of human hemoglobin A. The beta zero-thalassemic mice can be used to test genetic therapies for beta zero-thalassemia and can be bred with transgenic mice expressing high levels of human hemoglobin HbS to produce an improved mouse model of sickle cell disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Only three isoforms of adenylyl cyclase (EC 4.6.1.1) mRNAs (AC1, -2, and -5) are expressed at high levels in rat brain. AC1 occurs predominantly in hippocampus and cerebellum, AC5 is restricted to the basal ganglia, whereas AC2 is more widely expressed, but at much lower levels. The distribution and abundance of adenylyl cyclase protein were examined by immunohistochemistry with an antiserum that recognizes a peptide sequence shared by all known mammalian adenylyl cyclase isoforms. The immunoreactivity in striatum and hippocampus could be readily interpreted within the context of previous in situ hybridization studies. However, extending the information that could be gathered by comparisons with in situ hybridization analysis, it was apparent that staining was confined to the neuropil--corresponding to immunoreactive dendrites and axon terminals. Electron microscopy indicated a remarkably selective subcellular distribution of adenylyl cyclase protein. In the CA1 area of the hippocampus, the densest immunoreactivity was seen in postsynaptic densities in dendritic spine heads. Labeled presynaptic axon terminals were also observed, indicating the participation of adenylyl cyclase in the regulation of neurotransmitter release. The selective concentration of adenylyl cyclases at synaptic sites provides morphological data for understanding the pre- and postsynaptic roles of adenylyl cyclase in discrete neuronal circuits in rat brain. The apparent clustering of adenylyl cyclases, coupled with other data that suggest higher-order associations of regulatory elements including G proteins, N-methyl-D-aspartate receptors, and cAMP-dependent protein kinases, suggests not only that the primary structural information has been encoded to render the cAMP system responsive to the Ca(2+)-signaling system but also that higher-order strictures are in place to ensure that Ca2+ signals are economically delivered and propagated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The glucocorticoid-responsive units (GRUs) of the rat tyrosine aminotransferase were associated with the regulatory sequences of a cellular gene expressed ubiquitously--that coding for the largest subunit of RNA polymerase II. In transient expression assays, glucocorticoid responsiveness of the hybrid regulatory regions depends on the spatial relationship and number of regulatory elements. Two parameters affect the ratio of induction by glucocorticoids: the basal level of the hybrid promoter that is affected by the RNA polymerase II regulatory sequences and the glucocorticoid-induced level that depends on the distance between the GRUs and the TATA box. A fully active glucocorticoid-responsive hybrid gene was used to generate transgenic mice. Results show that a composite regulatory pattern is obtained: ubiquitous basal expression characteristic of the RNA polymerase II gene and liver-specific glucocorticoid activation characteristic of the tyrosine aminotransferase GRUs. This result demonstrates that the activity of the tyrosine aminotransferase GRUs is cell-type-specific not only in cultured cells but also in the whole animal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The RecBCD enzyme of Escherichia coli promotes recombination preferentially at chi nucleotide sequences and has in vivo helicase and strong duplex DNA exonuclease (exoV) activities. The enzyme without the RecD subunit, as in a recD null mutant, promotes recombination efficiently but independently of chi and has no nucleolytic activity. Employing phage lambda red gam crosses, phage T4 2- survival measurements, and exoV assays, it is shown that E. coli cells in which RecBCD has extensive opportunity to interact with linear chi-containing DNA (produced by rolling circle replication of a plasmid with chi or by bleomycin-induced fragmentation of the cellular chromosome) acquire the phenotype of a recD mutant and maintain this for approximately 2 h. It is concluded that RecBCD is converted into RecBC during interaction with chi by irreversible inactivation of RecD. After conversion, the enzyme is released and initiates recombination on other DNA molecules in a chi-independent fashion. Overexpression of recD+ (from a plasmid) prevented the phenotypic change and providing RecD after the change restored chi-stimulated recombination. The observed recA+ dependence of the downregulation of exoV could explain the previously noted "reckless" DNA degradation of recA mutants. It is proposed that chi sites are regulatory elements for the RecBCD to RecBC switch and thereby function as cis- and trans-acting stimulators of RecBC-dependent recombination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Keratins, the constituents of epithelial intermediate filaments, are precisely regulated in a tissue- and development-specific manner, although little is known about the molecular mechanisms underlying this regulation. The expression pattern of keratin 6 is particularly complex, since besides being constitutively expressed in hair follicles and in suprabasal cells of a variety of internal stratified epithelia, it is induced in epidermis in both natural and artificially caused hyperproliferative situations. Therefore, the regulatory sequences controlling keratin 6 gene activity are particularly suitable for target gene expression in a tissue-specific manner. More interestingly, they can be skin-induced in transgenic animals or in gene therapy protocols, particularly those addressing epidermal hyperproliferative disorders. To delimit the regions containing these regulatory elements, different parts of the bovine keratin 6 gene linked to a beta-galactosidase reporter gene have been assayed in transgenic mice. A 9-kbp fragment from the 5' upstream region was able to provide both suprabasal tissue-specific and inducible reporter expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we show the conserved regulation of the homeodomain gene Distal-less-3 (Dlx-3) by analyzing the expression of a promoter from the Xenopus ortholog, Xdll-2, in transgenic mice. A 470-bp frog regulatory sequence confers appropriate expression on a lacZ reporter gene in the ectodermal component of structures derived from epithelial-mesenchymal interactions. Remarkably, this includes structures absent in Xenopus, such as the hair follicle and mammary gland, suggesting that conserved regulatory elements can be used to control the formation of structures peculiar to individual species. In addition, expression of Dlx-3 in developing limbs is highest at the most distal portion. This pattern is duplicated by the Xenopus promoter, indicating that this DNA may include sequences responsive to conserved proximodistal patterning signals in the vertebrate limb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aberrant expression of transforming growth factor beta 1 (TGF-beta 1) has been implicated in a number of disease processes, particularly those involving fibrotic and inflammatory lesions. To determine the in vivo effects of overexpression of TGF-beta 1 on the function and structure of hepatic as well as extrahepatic tissues, transgenic mice were generated containing a fusion gene (Alb/TGF-beta 1) consisting of modified porcine TGF-beta 1 cDNA under the control of the regulatory elements of the mouse albumin gene. Five transgenic lines were developed, all of which expressed the Alb/TGF-beta 1 transgene selectively in hepatocytes. The transgenic line 25 expressing the highest level of the transgene in the liver also had high (> 10-fold over control) plasma levels of TGF-beta 1. Hepatic fibrosis and apoptotic death of hepatocytes developed in all the transgenic lines but was more pronounced in line 25. The fibrotic process was characterized by deposition of collagen around individual hepatocytes and within the space of Disse in a radiating linear pattern. Several extrahepatic lesions developed in line 25, including glomerulonephritis and renal failure, arteritis and myocarditis, as well as atrophic changes in pancreas and testis. The results from this transgenic model strongly support the proposed etiological role for TGF-beta 1 in a variety of fibrotic and inflammatory disorders. The transgenic model may also provide an appropriate paradigm for testing therapeutic interventions aimed at neutralizing the detrimental effects of this important cytokine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatic glucokinase plays a key role in glucose metabolism as underlined by the anomalies associated with glucokinase mutations and the consequences of tissue-specific knock-out. In the liver, glucokinase transcription is absolutely dependent on the presence of insulin. The cis-elements and trans-acting factors that mediate the insulin effect are presently unknown; this is also the case for most insulin-responsive genes. We have shown previously that the hepatic expression of the transcription factor sterol regulatory element binding protein-1c (SREBP-1c) is activated by insulin. We show here in primary cultures of hepatocytes that the adenovirus-mediated transduction of a dominant negative form of SREBP-1c inhibits the insulin effect on endogenous glucokinase expression. Conversely, in the absence of insulin, the adenovirus-mediated transduction of a dominant positive form of SREBP-1c overcomes the insulin dependency of glucokinase expression. Hepatic fatty acid synthase and Spot-14 are insulin/glucose-dependent genes. For this latter class of genes, the dominant positive form of SREBP-1c obviates the necessity for the presence of insulin, whereas glucose potentiates the effect of SREBP-1c on their expression. In addition, the insulin dependency of lipid accumulation in cultured hepatocytes is overcome by the dominant positive form of SREBP-1c. We propose that SREBP-1c is a major mediator of insulin action on hepatic gene expression and a key regulator of hepatic glucose/lipid metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The function of repressor activator protein 1 (Rap1p) at glycolytic enzyme gene upstream activating sequence (UAS) elements in Saccharomyces cerevisiae is to facilitate binding of glycolysis regulatory protein 1 (Gcr1p) at adjacent sites. Rap1p has a modular domain structure. In its amino terminus there is an asymmetric DNA-bending domain, which is distinct from its DNA-binding domain, which resides in the middle of the protein. In the carboxyl terminus of Rap1p lie its silencing and putative activation domains. We carried out a molecular dissection of Rap1p to identify domains contributing to its ability to facilitate binding of Gcr1p. We prepared full-length and three truncated versions of Rap1p and tested their ability to facilitate binding of Gcr1p by gel shift assay. The ability to detect ternary complexes containing Rap1p⋅DNA⋅Gcr1p depended on the presence of binding sites for both proteins in the probe DNA. The DNA-binding domain of Rap1p, although competent to bind DNA, was unable to facilitate binding of Gcr1p. Full-length Rap1p and the amino- and carboxyl-truncated versions of Rap1p were each able to facilitate binding of Gcr1p at an appropriately spaced binding site. Under these conditions, Gcr1p displayed an approximately 4-fold greater affinity for Rap1p-bound DNA than for otherwise identical free DNA. When spacing between Rap1p- and Gcr1p-binding sites was altered by insertion of five nucleotides, the ability to form ternary Rap1p⋅DNA⋅Gcr1p complexes was inhibited by all but the DNA-binding domain of Rap1p itself; however, the ability of each individual protein to bind the DNA probe was unaffected.