54 resultados para proteinase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final step in the pathway that provides for glycosylphosphatidylinositol (GPI) anchoring of cell-surface proteins occurs in the lumen of the endoplasmic reticulum and consists of a transamidation reaction in which fully assembled GPI anchor donors are substituted for specific COOH-terminal signal peptide sequences contained in nascent polypeptides. In previous studies we described a human K562 cell mutant line, designated class K, which assembles all the known intermediates of the GPI pathway but fails to display GPI-anchored proteins on its surface membrane. In the present study, we used mRNA encoding miniPLAP, a truncated form of placental alkaline phosphatase (PLAP), in in vitro assays with rough microsomal membranes (RM) of mutant K cells to further characterize the biosynthetic defect in this line. We found that RM from mutant K cells supported NH2-terminal processing of the nascent translational product, preprominiPLAP, but failed to show any detectable COOH-terminal processing of the resulting prominiPLAP to GPI-anchored miniPLAP. Proteinase K protection assays verified that NH2-terminal processed prominiPLAP was appropriately translocated into the endoplasmic reticulum lumen. The addition of hydrazine or hydroxylamine, which can substitute for GPI donors, to RM from wild-type or mutant cells defective in various intermediate biosynthetic steps in the GPI pathway produced large amounts of the hydrazide or hydroxamate of miniPLAP. In contrast, the addition of these nucleophiles to RM of class K cells yielded neither of these products. These data, taken together, lead us to conclude that mutant K cells are defective in part of the GPI transamidase machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chimeric genomes of poliovirus (PV) have been constructed in which the cognate internal ribosomal entry site (IRES) element was replaced by genetic elements of hepatitis C virus (HCV). Replacement of PV IRES with nt 9-332 of the genotype Ib HCV genome, a sequence comprising all but the first eight residues of the 5' nontranslated region (5'NTR) of HCV, resulted in a lethal phenotype. Addition of 366 nt of the HCV core-encoding sequence downstream of the HCV 5'NTR yielded a viable PV/HCV chimera, which expressed a stable, small-plaque phenotype. This chimeric genome encoded a truncated HCV core protein that was fused to the N terminus of the PV polyprotein via an engineered cleavage site for PV proteinase 3CPpro. Manipulation of the HCV core-encoding sequence of this viable chimera by deletion and frameshift yielded results suggesting that the 5'-proximal sequences of the HCV open reading frame were essential for viability of the chimera and that the N-terminal basic region of the HCV core protein is required for efficient replication of the chimeric virus. These data suggest that the bona fide HCV IRES includes genetic information mapping to the 5'NTR and sequences of the HCV open reading frame. PV chimeras replicating under translational control of genetic elements of HCV can serve to study HCV IRES function in vivo and to search for anti-HCV chemotherapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During meiosis in Saccharomyces cerevisiae, the first chemical step in homologous recombination is the occurrence of site-specific DNA double-strand breaks (DSBs). In wild-type cells, these breaks undergo resection of their 5' strand termini to yield molecules with 3' single-stranded tails. We have further characterized the breaks that accumulate in rad50S mutant stains defective in DSB resection. We find that these DSBs are tightly associated with protein via what appears to be a covalent linkage. When genomic DNA is prepared from meiotic rad50S cultures without protease treatment steps, the restriction fragments diagnostic of DSBs selectively partition to the organic-aqueous interphase in phenol extractions and band at lower than normal density in CsCl density gradients. Selective partitioning and decreased buoyant density are abolished if the DNA is treated with proteinase K prior to analysis. Similar results are obtained with sae2-1 mutant strains, which have phenotypes identical to rad50S mutants. The protein is bound specifically to the 5' strand termini of DSBs and is present at both 5' ends in at least a fraction of breaks. The stability of the complex to various protein denaturants and the strand specificity of the attachment are most consistent with a covalent linkage to DSB termini. We propose that the DSB-associated protein is the catalytic subunit of the meiotic recombination initiation nuclease and that it cleaves DNA via a covalent protein-DNA intermediate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cuticle of the silkworm Bombyx mori was demonstrated to contain pro-phenol oxidase [zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] and its activating cascade. The activating cascade contained at least one serine proteinase zymogen (latent form of pro-phenol oxidase activating enzyme). When the extracted cascade components were incubated with Ca2+, the latent form of pro-phenol oxidase activating enzyme was itself activated and, in turn, converted through a limited proteolysis of pro-phenol oxidase to phenol oxidase. Immuno-gold localization of prophenol oxidase in the cuticle using a cross-reactive hemolymph anti-pro-phenol oxidase antibody revealed a random distribution of this enzyme in the nonlamellate endocuticle and a specific orderly arrayed pattern along the basal border of the laminae in the lamellate endocuticle of the body wall. Furthermore, prophenol oxidase was randomly distributed in the taenidial cushion of the tracheal cuticle. At the time of pro-phenol oxidase accumulation in the body wall cuticle, no pro-phenol oxidase mRNA could be detected in the epidermal tissue, whereas free-circulating hemocytes contained numerous transcripts of pro-phenol oxidase. Our results suggest that the pro-phenol oxidase is synthesized in the hemocytes and actively transported into the cuticle via the epidermis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA topoisomerase I (top1) is a ubiquitous nuclear enzyme. It is specifically inhibited by camptothecin, a natural product derived from the bark of the tree Camptotheca acuminata. Camptothecin and several of its derivatives are presently in clinical trial and exhibit remarkable anticancer activity. The present study is a further investigation of the molecular interactions between the drug and the enzyme-DNA complex. We utilized an alkylating camptothecin derivative, 7-chloromethyl-10,11-methylenedioxycamptothecin (7-ClMe-MDO-CPT), and compared its activity against calf thymus top1 in a DNA oligonucleotide containing a single top1 cleavage site with the activity of its nonalkylating analog, 7-ethyl-10,11-methylenedioxycamptothecin (7-Et-MDO-CPT). In the presence of top1, 7-ClMe-MDO-CPT produced a DNA fragment that migrated more slowly than the top1-cleaved DNA fragment observed with 7-Et-MDO-CPT. Top1 was unable to religate this fragment in the presence of high NaCl concentration or proteinase K at 50 degrees C. This fragment was resistant to piperidine treatment and was also formed with an oligonucleotide containing a 7-deazaguanine at the 5' terminus of the top1-cleaved DNA (base + 1). It was however cleaved by formic acid treatment followed by piperidine. These observations are consistent with alkylation of the +1 base (adenine or guanine) by 7-ClMe-MDO-CPT in the presence of top1 covalent complexes and provide direct evidence that camptothecins inhibit top1 by binding at the enzyme-DNA interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pro-phenol oxidase [pro-PO; zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] is present in the hemolymph plasma of the silkworm Bombyx mori. Pro-PO is a heterodimeric protein synthesized by hemocytes. A specific serine proteinase activates both subunits through a limited proteolysis. The amino acid sequences of both subunits were deduced from their respective cDNAs; amino acid sequence homology between the subunits was 51%. The deduced amino acid sequences revealed domains highly homologous to the copper-binding site sequences (copper-binding sites A and B) of arthropod hemocyanins. The overall sequence homology between silkworm pro-PO and arthropod hemocyanins ranged from 29 to 39%. Phenol oxidases from prokaryotes, fungi, and vertebrates have sequences homologous to only the copper-binding site B of arthropod hemocyanins. Thus, silkworm pro-PO DNA described here appears distinctive and more closely related to arthropod hemocyanins. The pro-PO-activating serine proteinase was shown to hydrolyze peptide bonds at the carboxyl side of arginine in the sequence-Asn-49-Arg-50-Phe-51-Gly-52- of both subunits. Amino groups of N termini of both subunits were indicated to be N-acetylated. The cDNAs of both pro-PO subunits lacked signal peptide sequences. This result supports our contention that mature pro-PO accumulates in the cytoplasm of hemocytes and is released by cell rupture, as for arthropod hemocyanins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclophilins are a family of ubiquitous proteins that are the intracellular target of the immunosuppressant drug cyclosporin A. Although cyclophilins catalyze peptidylprolyl cis-trans isomerization in vitro, it has remained open whether they also perform this function in vivo. Here we show that Cpr3p, a cyclophilin in the matrix of yeast mitochondria, accelerates the refolding of a fusion protein that was synthesized in a reticulocyte lysate and imported into the matrix of isolated yeast mitochondria. The fusion protein consisted of the matrix-targeting sequence of subunit 9 of F1F0-ATPase fused to mouse dihydrofolate reductase. Refolding of the dihydrofolate reductase moiety in the matrix was monitored by acquisition of resistance to proteinase K. The rate of refolding was reduced by a factor of 2-6 by 2.5 microM cyclosporin A. This reduced rate of folding was also observed with mitochondria lacking Cpr3p. In these mitochondria, protein folding was insensitive to cyclosporin A. The rate of protein import was not affected by cyclosporin A or by deletion of Cpr3p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jasmonic acid, synthesized from linolenic acid (the octadecanoid pathway), has been proposed to be part of a signal transduction pathway that mediates the induction of defensive genes in plants in response to oligouronide and polypeptide signals generated by insect and pathogen attacks. We report here that the induction of proteinase inhibitor accumulation in tomato leaves by plant-derived oligogalacturonides and fungal-derived chitosan oligosaccharides is severely reduced by two inhibitors (salicylic acid and diethyldi-thiocarbamic acid) of the octadecanoid pathway, supporting a role for the pathway in signaling by oligosaccharides. Jasmonic acid levels in leaves of tomato plants increased several fold within 2 hr after supplying the polypeptide systemin, oligogalacturonides, or chitosan to the plants through their cut stems, as expected if they utilize the octadecanoid pathway. The time course of jasmonic acid accumulation in tomato leaves in response to wounding was consistent with its proposed role in signaling proteinase inhibitor mRNA and protein synthesis. The cumulative evidence supports a model for the activation of defensive genes in plants in response to insect and pathogen attacks in which various elicitors generated at the attack sites activate the octadecanoid pathway via different recognition events to induce the expression of defensive genes in local and distal tissues of the plants.