63 resultados para prion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prion diseases are a group of fatal neurodegenerative disorders that are unique in being infectious, genetic, and sporadic in origin. Infectious cases are caused by prions, which are composed primarily of PrPSc, a posttranslationally modified isoform of the normal cellular prion protein PrPC. Inherited cases are linked to insertional or point mutations in the host gene encoding PrPC. To investigate the molecular mechanisms underlying inherited prion diseases, we have constructed stably transfected Chinese hamster ovary cells that express mouse PrPs homologous to two human PrPs associated with familial Creutzfeldt-Jakob disease. One mouse PrP molecule carries a Glu-->Lys substitution at codon 199, and the other carries an insertion of six additional octapeptide repeats between codons 51 and 90. We find that both of these mutant PrPs display several biochemical hallmarks of PrPSc when synthesized in cell culture. Unlike wild-type PrP, the mutant proteins are detergent insoluble and are relatively resistant to digestion by proteinase K, yielding an N-terminally truncated core fragment of 27-30 kDa. Pulse-chase labeling experiments demonstrate that these properties are acquired posttranslationally, and are accompanied by increased metabolic stability of the protein. Our results provide the first evidence that a molecule with properties reminiscent of PrPSc can be generated de novo in cultured cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recorded in the CA1 region from hippocampal slices of prion protein (PrP) gene knockout mice to investigate whether the loss of the normal form of prion protein (PrPC) affects neuronal excitability as well as synaptic transmission in the central nervous system. No deficit in synaptic inhibition was found using field potential recordings because (i) responses induced by stimulation in stratum radiatum consisted of a single population spike in PrP gene knockout mice similar to that recorded from control mice and (ii) the plot of field excitatory postsynaptic potential slope versus the population spike amplitude showed no difference between the two groups of mice. Intracellular recordings also failed to detect any difference in cell excitability and the reversal potential for inhibitory postsynaptic potentials. Analysis of the kinetics of inhibitory postsynaptic current revealed no modification. Finally, we examined whether synaptic plasticity was altered and found no difference in long-term potentiation between control and PrP gene knockout mice. On the basis of our findings, we propose that the loss of the normal form of prion protein does not alter the physiology of the CA1 region of the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deposition of PrP amyloid in cerebral vessels in conjunction with neurofibrillary lesions is the neuropathologic hallmark of the dementia associated with a stop mutation at codon 145 of PRNP, the gene encoding the prion protein (PrP). In this disorder, the vascular amyloid in tissue sections and the approximately 7.5-kDa fragment extracted from amyloid are labeled by antibodies to epitopes located in the PrP sequence including amino acids 90-147. Amyloid-laden vessels are also labeled by antibodies against the C terminus, suggesting that PrP from the normal allele is involved in the pathologic process. Abundant neurofibrillary lesions are present in the cerebral gray matter. They are composed of paired helical filaments, are labeled with antibodies that recognize multiple phosphorylation sites in tau protein, and are similar to those observed in Alzheimer disease. A PrP cerebral amyloid angiopathy has not been reported in diseases caused by PRNP mutations or in human transmissible spongiform encephalopathies; we propose to name this phenotype PrP cerebral amyloid angiopathy (PrP-CAA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conversion of the cellular isoform of prion protein (PrPC) into the scrapie isoform (PrPSc) involves an increase in the beta-sheet content, diminished solubility, and resistance to proteolytic digestion. Transgenetic studies argue that PrPC and PrPSc form a complex during PrPSc formation; thus, synthetic PrP peptides, which mimic the conformational pluralism of PrP, were mixed with PrPC to determine whether its properties were altered. Peptides encompassing two alpha-helical domains of PrP when mixed with PrPC produced a complex that displayed many properties of PrPSc. The PrPC-peptide complex formed fibrous aggregates and up to 65% of complexed PrPC sedimented at 100,000 x g for 1 h, whereas PrPC alone did not. These complexes were resistant to proteolytic digestion and displayed a high beta-sheet content. Unexpectedly, the peptide in a beta-sheet conformation did not form the complex, whereas the random coil did. Addition of 2% Sarkosyl disrupted the complex and rendered PrPC sensitive to protease digestion. While the pathogenic A117V mutation increased the efficacy of complex formation, anti-PrP monoclonal antibody prevented interaction between PrPC and peptides. Our findings in concert with transgenetic investigations argue that PrPC interacts with PrPSc through a domain that contains the first two putative alpha-helices. Whether PrPC-peptide complexes possess prion infectivity as determined by bioassays remains to be established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scrapie is a transmissible neurodegenerative disease that appears to result from an accumulation in the brain of an abnormal protease-resistant isoform of prion protein (PrP) called PrPsc. Conversion of the normal, protease-sensitive form of PrP (PrPc) to protease-resistant forms like PrPsc has been demonstrated in a cell-free reaction composed largely of hamster PrPc and PrPsc. We now report studies of the species specificity of this cell-free reaction using mouse, hamster, and chimeric PrP molecules. Combinations of hamster PrPc with hamster PrPsc and mouse PrPc with mouse PrPsc resulted in the conversion of PrPc to protease-resistant forms. Protease-resistant PrP species were also generated in the nonhomologous reaction of hamster PrPc with mouse PrPsc, but little conversion was observed in the reciprocal reaction. Glycosylation of the PrPc precursors was not required for species specificity in the conversion reaction. The relative conversion efficiencies correlated with the relative transmissibilities of these strains of scrapie between mice and hamsters. Conversion experiments performed with chimeric mouse/hamster PrPc precursors indicated that differences between PrPc and PrPsc at residues 139, 155, and 170 affected the conversion efficiency and the size of the resultant protease-resistant PrP species. We conclude that there is species specificity in the cell-free interactions that lead to the conversion of PrPc to protease-resistant forms. This specificity may be the molecular basis for the barriers to interspecies transmission of scrapie and other transmissible spongiform encephalopathies in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental lemurs either were infected orally with the agent of bovine spongiform encephalopathy (BSE) or were maintained as uninfected control animals. Immunohistochemical examination for proteinase-resistant protein (prion protein or PrP) was performed on tissues from two infected but still asymptomatic lemurs, killed 5 months after infection, and from three uninfected control lemurs. Control tissues showed no staining, whereas PrP was detected in the infected animals in tonsil, gastrointestinal tract and associated lymphatic tissues, and spleen. In addition, PrP was detected in ventral and dorsal roots of the cervical spinal cord, and within the spinal cord PrP could be traced in nerve tracts as far as the cerebral cortex. Similar patterns of PrP immunoreactivity were seen in two symptomatic and 18 apparently healthy lemurs in three different French primate centers, all of which had been fed diets supplemented with a beef protein product manufactured by a British company that has since ceased to include beef in its veterinary nutritional products. This study of BSE-infected lemurs early in their incubation period extends previous pathogenesis studies of the distribution of infectivity and PrP in natural and experimental scrapie. The similarity of neuropathology and PrP immunostaining patterns in experimentally infected animals to those observed in both symptomatic and asymptomatic animals in primate centers suggests that BSE contamination of zoo animals may have been more widespread than is generally appreciated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report that branched polyamines, including polyamidoamide dendimers, polypropyleneimine, and polyethyleneimine, are able to purge PrPSc, the protease-resistant isoform of the prion protein, from scrapie-infected neuroblastoma (ScN2a) cells in culture. The removal of PrPSc by these compounds depends on both the concentration of branched polymer and the duration of exposure. Chronic exposure of ScN2a cells to low noncytotoxic concentrations of branched polyamines for 1 wk reduced PrPSc to an undetectable level, a condition that persisted at least 3 wk after removal of the compound. Structure–activity analysis revealed that a high surface density of primary amino groups is required for polyamines to eliminate PrPSc effectively from cells. The removal of PrPSc by branched polyamines is attenuated by chloroquine in living cells, and exposure of scrapie-infected brain extracts with branched polyamines at acidic pH rendered the PrPSc susceptible to protease in vitro, suggesting that endosomes or lysozomes may be the site of action. Our studies suggest that branched polyamines might be useful therapeutic agents for treatment of prion diseases and perhaps a variety of other degenerative disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing concern that bovine spongiform encephalopathy (BSE) may have passed from cattle to humans. We report here that transgenic (Tg) mice expressing bovine (Bo) prion protein (PrP) serially propagate BSE prions and that there is no species barrier for transmission from cattle to Tg(BoPrP) mice. These same mice were also highly susceptible to a new variant of Creutzfeldt–Jakob disease (nvCJD) and natural sheep scrapie. The incubation times (≈250 days), neuropathology, and disease-causing PrP isoforms in Tg(BoPrP)Prnp0/0 mice inoculated with nvCJD and BSE brain extracts were indistinguishable and differed dramatically from those seen in these mice injected with natural scrapie prions. Our findings provide the most compelling evidence to date that prions from cattle with BSE have infected humans and caused fatal neurodegeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sandhoff disease is a lysosomal storage disorder characterized by the absence of β-hexosaminidase and storage of GM2 ganglioside and related glycolipids in the central nervous system. The glycolipid storage causes severe neurodegeneration through a poorly understood pathogenic mechanism. In symptomatic Sandhoff disease mice, apoptotic neuronal cell death was prominent in the caudal regions of the brain. cDNA microarray analysis to monitor gene expression during neuronal cell death revealed an upregulation of genes related to an inflammatory process dominated by activated microglia. Activated microglial expansion, based on gene expression and histologic analysis, was found to precede massive neuronal death. Extensive microglia activation also was detected in a human case of Sandhoff disease. Bone marrow transplantation of Sandhoff disease mice suppressed both the explosive expansion of activated microglia and the neuronal cell death without detectable decreases in neuronal GM2 ganglioside storage. These results suggest a mechanism of neurodegeneration that includes a vigorous inflammatory response as an important component. Thus, this lysosomal storage disease has parallels to other neurodegenerative disorders, such as Alzheimer's and prion diseases, where inflammatory processes are believed to participate directly in neuronal cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[PSI+] is a genetic element in yeast for which a heritable change in phenotype appears to be caused by a heritable change in the conformational state of the Sup35 protein. The inheritance of [PSI+] and the physical state of Sup35 in vivo depend on the protein chaperone Hsp104 (heat shock protein 104). Although these observations provide a strong genetic argument in support of the “protein-only” or “prion” hypothesis for [PSI+], there is, as yet, no direct evidence of an interaction between the two proteins. We report that when purified Sup35 and Hsp104 are mixed, the circular dichroism (CD) spectrum differs from that predicted by the addition of the proteins’ individual spectra, and the ATPase activity of Hsp104 is inhibited. Similar results are obtained with two other amyloidogenic substrates, mammalian PrP and β-amyloid 1-42 peptide, but not with several control proteins. With a group of peptides that span the PrP protein sequence, those that produced the largest changes in CD spectra also caused the strongest inhibition of ATPase activity in Hsp104. Our observations suggest that (i) previously described genetic interactions between Hsp104 and [PSI+] are caused by direct interaction between Hsp104 and Sup35; (ii) Sup35 and PrP, the determinants of the yeast and mammalian prions, respectively, share structural features that lead to a specific interaction with Hsp104; and (iii) these interactions couple a change in structure to the ATPase activity of Hsp104.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The downstream prion-like protein (doppel, or Dpl) is a paralog of the cellular prion protein, PrPC. The two proteins have ≈25% sequence identity, but seem to have distinct physiologic roles. Unlike PrPC, Dpl does not support prion replication; instead, overexpression of Dpl in the brain seems to cause a completely different neurodegenerative disease. We report the solution structure of a fragment of recombinant mouse Dpl (residues 26–157) containing a globular domain with three helices and a small amount of β-structure. Overall, the topology of Dpl is very similar to that of PrPC. Significant differences include a marked kink in one of the helices in Dpl, and a different orientation of the two short β-strands. Although the two proteins most likely arose through duplication of a single ancestral gene, the relationship is now so distant that only the structures retain similarity; the functions have diversified along with the sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is substantial scientific evidence to support the notion that bovine spongiform encephalopathy (BSE) has contaminated human beings, causing variant Creutzfeldt–Jakob disease (vCJD). This disease has raised concerns about the possibility of an iatrogenic secondary transmission to humans, because the biological properties of the primate-adapted BSE agent are unknown. We show that (i) BSE can be transmitted from primate to primate by intravenous route in 25 months, and (ii) an iatrogenic transmission of vCJD to humans could be readily recognized pathologically, whether it occurs by the central or peripheral route. Strain typing in mice demonstrates that the BSE agent adapts to macaques in the same way as it does to humans and confirms that the BSE agent is responsible for vCJD not only in the United Kingdom but also in France. The agent responsible for French iatrogenic growth hormone-linked CJD taken as a control is very different from vCJD but is similar to that found in one case of sporadic CJD and one sheep scrapie isolate. These data will be key in identifying the origin of human cases of prion disease, including accidental vCJD transmission, and could provide bases for vCJD risk assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This investigation was pursued to test the use of intracellular antibodies (intrabodies) as a means of blocking the pathogenesis of Huntington's disease (HD). HD is characterized by abnormally elongated polyglutamine near the N terminus of the huntingtin protein, which induces pathological protein–protein interactions and aggregate formation by huntingtin or its exon 1-containing fragments. Selection from a large human phage display library yielded a single-chain Fv (sFv) antibody specific for the 17 N-terminal residues of huntingtin, adjacent to the polyglutamine in HD exon 1. This anti-huntingtin sFv intrabody was tested in a cellular model of the disease in which huntingtin exon 1 had been fused to green fluorescent protein (GFP). Expression of expanded repeat HD-polyQ-GFP in transfected cells shows perinuclear aggregation similar to human HD pathology, which worsens with increasing polyglutamine length; the number of aggregates in these transfected cells provided a quantifiable model of HD for this study. Coexpression of anti-huntingtin sFv intrabodies with the abnormal huntingtin-GFP fusion protein dramatically reduced the number of aggregates, compared with controls lacking the intrabody. Anti-huntingtin sFv fused with a nuclear localization signal retargeted huntingtin analogues to cell nuclei, providing further evidence of the anti-huntingtin sFv specificity and of its capacity to redirect the subcellular localization of exon 1. This study suggests that intrabody-mediated modulation of abnormal neuronal proteins may contribute to the treatment of neurodegenerative diseases such as HD, Alzheimer's, Parkinson's, prion disease, and the spinocerebellar ataxias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prions are unprecedented infectious pathogens that cause a group of invariably fatal neurodegenerative diseases by an entirely novel mechanism. Prion diseases may present as genetic, infectious, or sporadic disorders, all of which involve modification of the prion protein (PrP). Bovine spongiform encephalopathy (BSE), scrapie of sheep, and Creutzfeldt–Jakob disease (CJD) of humans are among the most notable prion diseases. Prions are transmissible particles that are devoid of nucleic acid and seem to be composed exclusively of a modified protein (PrPSc). The normal, cellular PrP (PrPC) is converted into PrPSc through a posttranslational process during which it acquires a high β-sheet content. The species of a particular prion is encoded by the sequence of the chromosomal PrP gene of the mammals in which it last replicated. In contrast to pathogens carrying a nucleic acid genome, prions appear to encipher strain-specific properties in the tertiary structure of PrPSc. Transgenetic studies argue that PrPSc acts as a template upon which PrPC is refolded into a nascent PrPSc molecule through a process facilitated by another protein. Miniprions generated in transgenic mice expressing PrP, in which nearly half of the residues were deleted, exhibit unique biological properties and should facilitate structural studies of PrPSc. While knowledge about prions has profound implications for studies of the structural plasticity of proteins, investigations of prion diseases suggest that new strategies for the prevention and treatment of these disorders may also find application in the more common degenerative diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incubation period (IP) and the neuropathology of transmissible spongiform encephalopathies (TSEs) have been extensively used to distinguish prion isolates (or strains) inoculated into panels of inbred mouse strains. Such studies have shown that the bovine spongiform encephalopathy (BSE) agent is indistinguishable from the agent causing variant Creutzfeldt–Jakob disease (vCJD), but differs from isolates of sporadic CJD, reinforcing the idea that the vCJD epidemic in Britain results from consumption of contaminated beef products. We present a mouse model for genetic and environmental factors that modify the incubation period of BSE cross-species transmission. We have used two mouse strains that carry the same prion protein (PrP) allele, but display a 100-day difference in their mean IP following intracerebral inoculation with primary BSE isolate. We report genetic effects on IP that map to four chromosomal regions, and in addition we find significant factors of host environment, namely the age of the host's mother, the age of the host at infection, and an X-cytoplasm interaction in the host.