51 resultados para plaques


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gap junctions are plaque-like clusters of intercellular channels that mediate intercellular communication. Each of two adjoining cells contains a connexon unit which makes up half of the whole channel. Gap junction channels are formed from a multigene family of proteins called connexins, and different connexins may be coexpressed by a single cell type and found within the same plaque. Rodent gap junctions contain two proteins, connexins 32 and 26. Use of a scanning transmission electron microscope for mass analysis of rodent gap junction plaques and split gap junctions prvided evidence consistent with a model in which the channels may be made from (i) solely connexin 26, (ii) solely connexin 32, or (iii) mixtures of connexin 26 and connexin 32 in which the two connexons are made entirely of connexin 26 and connexin 32. The different types of channels segregate into distinct domains, implying tha connexon channels self-associate to give a non-random distribution within tissues. Since each connexin confers distinct physiological properties on its membrane channels, these results imply that the physiological properties of channels can be tailored by mixing the constituent proteins within these macromolecular structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein kinase C (PKC) isoenzymes are essential components of cell signaling. In this study, we investigated the regulation of PKC-alpha in murine B16 amelanotic melanoma (B16a) cells by the monohydroxy fatty acids 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] and 13(S)-hydroxyoctadecadienoic acid [13(S)-HODE]. 12(S)-HETE induced a translocation of PKC-alpha to the plasma membrane and focal adhesion plaques, leading to enhanced adhesion of B16a cells to the matrix protein fibronectin. However, 13(S)-HODE inhibited these 12(S)-HETE effects on PKC-alpha. A receptor-mediated mechanism of action for 12(S)-HETE and 13(S)-HODE is supported by the following findings. First, 12(S)-HETE triggered a rapid increase in cellular levels of diacylglycerol and inositol trisphosphate in B16a cells. 13(S)-HODE blocked the 12(S)-HETE-induced bursts of both second messengers. Second, the 12(S)-HETE-increased adhesion of B16a cells to fibronectin was sensitive to inhibition by a phospholipase C inhibitor and pertussis toxin. Finally, a high-affinity binding site (Kd = 1 nM) for 12(S)-HETE was detected in B16a cells, and binding of 12(S)-HETE to B16a cells was effectively inhibited by 13(S)-HODE (IC50 = 4 nM). In summary, our data provide evidence that regulation of PKC-alpha by 12(S)-HETE and 13(S)-HODE may be through a guanine nucleotide-binding protein-linked receptor-mediated hydrolysis of inositol phospholipids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Representational difference analysis was used to search for pathogens in multiple sclerosis brains. We detected a 341-nucleotide fragment that was 99.4% identical to the major DNA binding protein gene of human herpesvirus 6 (HHV-6). Examination of 86 brain specimens by PCR demonstrated that HHV-6 was present in > 70% of MS cases and controls and is thus a commensal virus of the human brain. By DNA sequencing, 36/37 viruses from MS cases and controls were typed as HHV-6 variant B group 2. Other herpesviruses, retroviruses, and measles virus were detected infrequently or not at all. HHV-6 expression was examined by immunocytochemistry with monoclonal antibodies against HHV-6 virion protein 101K and DNA binding protein p41. Nuclear staining of oligodendrocytes was observed in MS cases but not in controls, and in MS cases it was observed around plaques more frequently than in uninvolved white matter. MS cases showed prominent cytoplasmic staining of neurons in gray matter adjacent to plaques, although neurons expressing HHV-6 were also found in certain controls. Since destruction of oligodendrocytes is a hallmark of MS, these studies suggest an association of HHV-6 with the etiology or pathogenesis of MS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular deposition of amyloid fibrils is responsible for the pathology in the systemic amyloidoses and probably also in Alzheimer disease [Haass, C. & Selkoe, D. J. (1993) Cell 75, 1039-1042] and type II diabetes mellitus [Lorenzo, A., Razzaboni, B., Weir, G. C. & Yankner, B. A. (1994) Nature (London) 368, 756-760]. The fibrils themselves are relatively resistant to proteolysis in vitro but amyloid deposits do regress in vivo, usually with clinical benefit, if new amyloid fibril formation can be halted. Serum amyloid P component (SAP) binds to all types of amyloid fibrils and is a universal constituent of amyloid deposits, including the plaques, amorphous amyloid beta protein deposits and neurofibrillary tangles of Alzheimer disease [Coria, F., Castano, E., Prelli, F., Larrondo-Lillo, M., van Duinen, S., Shelanski, M. L. & Frangione, B. (1988) Lab. Invest. 58, 454-458; Duong, T., Pommier, E. C. & Scheibel, A. B. (1989) Acta Neuropathol. 78, 429-437]. Here we show that SAP prevents proteolysis of the amyloid fibrils of Alzheimer disease, of systemic amyloid A amyloidosis and of systemic monoclonal light chain amyloidosis and may thereby contribute to their persistence in vivo. SAP is not an enzyme inhibitor and is protective only when bound to the fibrils. Interference with binding of SAP to amyloid fibrils in vivo is thus an attractive therapeutic objective, achievement of which should promote regression of the deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An approach was developed for the isolation and characterization of soybean plasma membrane-associated proteins by immunoscreening of a cDNA expression library. An antiserum was raised against purified plasma membrane vesicles. In a differential screening of approximately 500,000 plaque-forming units with the anti-(plasma membrane) serum and DNA probes derived from highly abundant clones isolated in a preliminary screening, 261 clones were selected from approximately 1,200 antiserum-positive plaques. These clones were classified into 40 groups by hybridization analysis and 5'- and 3'-terminal sequencing. By searching nucleic acid and protein sequence data bases, 11 groups of cDNAs were identified, among which valosin-containing protein (VCP), clathrin heavy chain, phospholipase C, and S-adenosylmethionine:delta 24-sterol-C-methyltransferase have not to date been cloned from plants. The remaining 29 groups did not match any current data base entries and may, therefore, represent additional or yet uncharacterized genes. A full-length cDNA encoding the soybean VCP was sequenced. The high level of amino acid identity with vertebrate VCP and yeast CDC48 protein indicates that the soybean protein is a plant homolog of vertebrate VCP and yeast CDC48 protein.